
© 2009 CC: Attribution-Noncommercial-Share Alike 3.0 Page 1 of 2

SCORM Content Vulnerability Workarounds

04/02/2009

Jonathan Poltrack

Problem Solutions (PS) LLC

Introduction
This whitepaper describes possible workarounds for
security concerns with the SCORM Run-Time API. Due
to the nature of ECMAScript (JavaScript) and the current
and past SCORM Run-Time API, it is not possible to
totally secure access to client-side functions. A user can
cheat the system by sending scores, progress status, and
other writeable data model element values to the LMS. A
final solution to this vulnerability will require an update
to the IEEE standards used by SCORM, or the addition
of a security layer to the API, thus solving this issue for
all new content. However, a significant quantity of
existing content would remain susceptible to cheating via
rouge API calls. A way to secure legacy content even
after a final solution is developed is still required. The
requirements below were considered during the
development of these workarounds. The SCORM
content vulnerability workaround must:

• Ensure that any SCORM Run-Time Data Model
values set and committed to the LMS are
accurate per the content developer’s original
intent.

• Provide indicators about whether cheating or
unauthorized API calls have occurred.

• Secure the vast majority of legacy content (both
SCORM 2004 and SCORM 1.2).

• Not result in changes to the underlying
standards or specifications.

• Be simple and lightweight from a content
developer’s perspective.

Workaround Descriptions
The workarounds described here do not prevent the
possibility of unauthorized API access. However, they do
ensure that appropriate values are stored in the vast
majority of existing content. SCORM allows for
individual SCORM data model elements to be set “n”
times during a learner session. For example, a SCO could
potentially set a score (cmi.score.scaled) to several
different values as the learner progresses through the
SCO. The only value that is used by the LMS is the final

value set by the SCO before the SCO terminates
(Terminate()). The final value is then used for
sequencing evaluations and potentially learner records. If
a cheat is used to set a score during a SCO’s
communication session, it has no effect unless it’s the
final value set immediately before the SCO terminates.

The ”Cache it, Set It, Terminate It” Principle
Currently, content developers should consider caching
(within the SCO) important data model values (ex:
scores. completion and success statuses, etc) until the
SCO is about to terminate. SCORM Run-Time Data
model elements should be set at the last potential
opportunity, immediately before calling Terminate().
This is more likely to create a situation where the
intended values are set as the immediate last step before
communication between the SCO and the LMS
terminates. Any unauthorized API calls after
Terminate() will be ignored and any associated data
model calls will not affect data persisted by the LMS.

This principle does not work in all cases. For example,
cmi.progress_measure might be set, potentially
several times, as a learner progresses through a SCO. In
this case, the best option may be to determine if any
unexpected data model elements have been set.

Identifying Unauthorized API Access
Sometimes it is important to detect if an unauthorized
API violation has occurred even if the correct values are
maintained by an LMS. There are several methods of
determining whether there was an attempt to cheat a
SCO. The following list details some characteristics that
can be used to determine unauthorized API use:

• Hashing expected values (see below)
• Comparing local cached values versus

GetValue() calls to the LMS
• Getting data model values from the LMS that

should not have been set by the SCO
• Identifying an unrealistic (shortened) amount of

time spent experiencing a SCO

SCORM Content Vulnerability Workarounds
Jonathan Poltrack, Problem Solutions Publication Date 04/02/2009

© 2009 CC: Attribution-Noncommercial-Share Alike 3.0 Page 2 of 2

Hashing Expected Values
To determine if a value was intentionally set by the SCO,
it may be useful to create hashed values for elements
intentionally set by the SCO. The following example
describes a possible flow through a SCO using hashing
to identify unauthorized API use:

1. SCO is launched and initialized
2. User experiences content and takes an exam
3. SCO sets a cmi.score.scaled value via

SetValue()
4. SCO uses the score value to create a value

calculated by a hash function
5. User cheats the API to set a score of 100%
6. SCO begins to terminate

o Before Terminate(), SCO gets the score
value from the LMS, enters it into the hash
function and compares the value versus the
hashed value in step #4

o If the hashed values do not correspond,
then the value was changed by the user or
some unauthorized process

After a situation as described above occurs, the SCO
may reset any unexpected values and set another data
model element to indicate that unauthorized API access
has occurred. The use of this flag is proprietary and may
not be used consistently across all LMSs.

Making it Easier
There are potential API wrapper modifications that could
be used in conjunction with legacy content to assist in
making a future solution backward compatible. It is
possible to build this caching approach as well as
verification via hashing into the API wrapper in a
consistent manner to be used with many SCOs. For
example, the following changes may assist in identifying
unauthorized API access as well as using the “Cache it,
Set It, Terminate It” Principle.

• SetValue() / LMSSetValue() – Extend to
include local arrays used by the SCO to
maintain cached values for data model elements
set by the SCO, the values of the data model
elements and/or hashed values for each
SetValue() call

• GetValue() / LMSGetValue() – Extend to
verify that values returned by the LMS result in
the same hashed value if the element was set
earlier in the same SCO

• Terminate() / LMSFinish() – Extend to set
cached versions of data model elements used
during the SCO. Extend to verify that values set
previously in the SCO were maintained and not
updated by an external process

Conclusion
The workarounds described in this document can be used
to ensure that expected values are maintained by an LMS
even if a learner or tool cheats the SCO with
unauthorized API calls. In addition, a SCO can use the
methods described here to determine if any data model
elements were set via unauthorized API calls. This
information can then be used to notify the system
manager or content owner of the possibility of cheating.
These workarounds are not intended as a final solution.
An effort must be put forth to solve this issue with secure
technologies in a future version of the SCORM.
However, these approaches can help ensure that the
persisted data model values associated with a learner
attempt on a SCO are those that were intended by the
content developer.

