Mapping Intelligent Tutoring System (ITS) Constructs

to SCORM 2004 Data Structures

Submitted for Contract DAA B07-03-D-BO11/0019
Michael K. Anthony, M.S.
Galaxy Scientific Corporation

Alan Ashworth, Ph.D.
Chief Scientist
USAF Research Laboratory BioBehavioral Systems
Table of Contents
3Introduction

3Cognitive Psychology

3Tutoring

4Types of knowledge

4Intelligent Tutoring Systems

4Expert Knowledge Model

5Novice Knowledge Model

5Instructional Model

5SCORM 2004

6Expert Model

6Novice Model

6Instructional Model

6Confounding Issues

6Case Study

6Cognitive Differences between Expert and Novice Learners

7Cognitive Considerations for Instruction

7The Response of the BEAM Course to Cognitive Considerations for Instruction

8Using SCORM to Implement the Response of the BEAM Course to Cognitive Considerations for Instruction

8Conclusion

9References

Introduction

Over the last several years, the Sharable Content Object Reference Model (SCORM) has evolved and improved significantly. Perhaps the most useful improvement to the SCORM is the addition of Simple Sequencing capabilities released with version 1.3 (SCORM 2004). Simple Sequencing has provided courseware developers with the tools necessary to design complex instructional systems such as those found in Intelligent Tutoring Systems (ITS). Specifically, developers can now use Simple Sequencing to design courseware with complex branching to provide individualized instruction to target the learning needs of individual students.

As part of the larger goal of evaluating SCORM capabilities, the ADL community is testing the compatibility between SCORM and ITS. Early attempts at using SCORM to develop advanced instructional courseware were limited by several factors including (1) sequencing code that is often embedded inside learning content code (2) sequencing behaviors that are inconsistent across delivery systems (3) sequencing models that are either proprietary or idiosyncratic (4) and sequencing models and activities that are poorly defined (Panar & Smith, 2002). For most developers, sophisticated structuring and course intelligence (e.g., using pretest scores to derive individual instruction paths or determining remediation requirements for individual students) had to be hard-coded into the Sharable Content Objects (SCO) themselves (Ball, 2001; Nieves & Craft, 2001; Panar & Smith, 2002; Steuck, 2001). This technique limited the reusability, sharability, and interoperability of early SCORM based training (Ball, 2001; Robson, 2001; Rehak, 2001; Panar & Smith, 2002; Steuck, 2001). It is hoped that with the release of SCORM 2004, members of the ADL community will develop, test, and field courseware that leverages known ITS principles.

The release and continued testing of versions 1.2 and 1.3 beta (which included the introduction of the SCORM Simple Sequencing) was followed by requests from the ADL community for continued improvements in adaptive training and content sequencing capabilities (Ball, 2001; Chuba, Pasini, Scillia, and Sobieszczyk, 2002; Panar & Smith, 2002; Steuck, 2002). With the full version 1.3 (i.e., SCORM 2004), many of the limiting factors mentioned above seem to have been reduced (Panar & Thropp, 2003). Courseware developers are now equipped to build intelligent instruction by employing complex branching and sequencing (Dargue & Perrin, 2003; Haynes, 2005; Johnson, 2005; Panar & Thropp, 2003; Panar & Smith, 2002).
The purpose of the current paper is to add to the knowledge base of the ADL community by explicitly mapping the constructs of typical ITS to the data structures in SCORM 2004. This mapping will provide a reference for those courseware developers accustomed to building intelligent, adaptive, or individualized training systems by providing an explicit mapping of ITS constructs (i.e., expert model, novice model, instructional approach) to the SCORM data structures. Subsequently, this paper will also address the difference in terminology between SCORM 2004 and that used by cognitive scientists and engineers who typically develop ITS.

The processes used to create ITS can be modeled and instantiated in code using SCORM 2004. Outlined here is the progression from human tutoring, to modeling of human tutoring for instructional systems (i.e., ITS), to actual instantiation of intelligent tutoring in code by employing the sequencing constructs from SCORM 2004.

Cognitive Psychology

Tutoring

The most effective method of instruction is one-on-one tutoring. An expert works directly with a novice. The expert’s goal is for the novice to have the same understanding as the expert. Cognitive theory has described this interaction in terms of mental knowledge representation. The expert has a representation of the content domain that has structure and content. For instruction, the expert organizes the lessons based upon the expert representational structure, and populates them with content based upon the expert representational content. While instructing, the expert monitors the comprehension of the novice. This is typically accomplished by asking the novice to perform in some manner (e.g., answer questions, paraphrase the expert, physically accomplish a task). If the novice comprehends the lesson, the expert moves on. If the novice does not comprehend the lesson, the expert remediates the novice. Implicit in the monitoring process are criteria for learning that the expert finds acceptable. If the novice meets the criteria, then the expert is satisfied and moves on. In cognitive terms, tutored instruction reduces to a process that causes the novice’s mental representation of the content domain to be similar in structure and content to that of the expert’s mental representation, and for that similarity to be specified by criteria.

Types of knowledge

One theoretical approach that has proven highly efficient for modeling human knowledge is to specify three basic knowledge types (1) conceptual (2) procedural (3) and declarative (Anderson, 1983). Conceptual knowledge is information about the overarching purpose or goal of a given instructional unit. For example, the purpose of changing a flat tire is to repair a part of your vehicle that is necessary for it to safely operate. Procedural knowledge is the processes and steps required to attain your goal. For the flat tire example, this would include steps like breaking the lug nuts loose, raising the car with a jack, removing the lug nuts, exchanging the tire for the spare, etc. Note that for experts, procedural steps often become ‘automated’ (Anderson, 1983). That is, they are rapid, accurate, and require very little attention. The may be so ‘automatic’ that they are processed with no conscious attention. Finally, declarative knowledge is units of information that are required to perform those processes or procedures needed to reach the goal. Declarative knowledge consists of factual features of categories (e.g., tires are held on by lug nuts), category labels (e.g., ‘changing a tire’ or ‘checking tire pressure’), pattern recognition information, and classification information (e.g., spare tires are stored in the trunk of a car, but underneath the bed in a truck).

Intelligent Tutoring Systems

The goal of Intelligent Tutoring Systems is to model the human tutoring interaction in a manner that can be implemented in a machine training system. Thus the essential theoretical components of human tutoring are realized in the Expert Knowledge Model, the Novice Knowledge Model, and the Instructional Model.

Expert Knowledge Model

Through cognitive task analyses of subject matter experts (SMEs), the Expert Knowledge Model is built. Commonly, this is a hierarchical structure referred to either as a semantic network or an ontological network. In this framework, individual nodes represent an amalgam of logically cohesive information reflecting the fact that there is no such thing as a pure informational type. That is, neither conceptual, nor procedural, nor declarative knowledge are ever completely isolated. The relative distribution of knowledge within a node reflects the level of abstraction. So, the higher levels of the hierarchy tend to be more abstract, and tend to contain more conceptual knowledge. The lower levels of the hierarchy are more concrete and tend to contain more declarative knowledge. A purely notional distribution of knowledge types across the hierarchy might be 60% conceptual, 20% procedural, and 20% declarative knowledge towards the top of the network; a 20% conceptual, 60% procedural, and 20% declarative towards the middle of the network; and a 20% conceptual, 20% procedural, and 60% declarative knowledge toward the bottom of the network. Placement of the content knowledge in the network depends upon its level of abstraction and its role as either requisite or prerequisite knowledge.

Once the expert model is built, it is used as the structure for courseware, and can serve as a global navigation map for the courseware. Course content consists of hierarchically structured lessons that map directly to nodes within the semantic network. Each lesson typically has instruction for each knowledge type.

Novice Knowledge Model

The Novice Knowledge Model is assumed to not exist in an organized form prior to formal training. However, a person could have some form of organized knowledge based upon analogous experience. In either case, it is assumed that the Novice Knowledge Model needs to be developed to the extent that it duplicates the Expert Knowledge Model. Pre-testing is a common method used to determine the incoming state of a Novice Knowledge Model.

Instructional Model

The Instructional Model presents the lessons, and monitors student comprehension through periodic test questions, procedural exercises, or embedded performance measures such as response time (RT) on interactive simulations. This monitoring provides a measure of the current state of the Novice Knowledge Model. Based upon a comparison between the Expert Model and the Novice Model, the Instructional Model determines in real time whether the student should be remediated, move on to the next lesson, or perhaps circumvent lessons. ITS typically employ a monitoring method that tests students within each node in the semantic network and uses criterion scores to determine whether a student has achieved sufficient mastery to move on to the next lesson or node. If criterion is met, then the student is allowed to move to next node. If the criterion is not met, the student stays in the current node until criterion score (or a secondary criterion) is met. This continues until the semantic network is completely traversed.

The Instructional Model must also contain information directing the sequencing of lessons within a course. Lessons are traversed using the semantic network as a course navigation map. The route through the course navigation map is determined by SME judgments of prerequisite knowledge. Both of these, the course navigation map and the route through the map are best developed with SME input during construction of the Expert Model.

Within the Instructional Model is the instructional methodology. This includes the methods, techniques, and strategies employed in the courseware to present content to students. Often, the techniques chosen are based upon knowledge type. Effective methods for teaching conceptual knowledge are analogy (Gick and Holyoak, 1980) familiarization, and description & definition. An effective method for teaching procedural knowledge is called compilation (Anderson, 1983), wherein large serial processes are decomposed into sub-processes. After each sub-process is rehearsed, they are recompiled back into the initial large process, which is then itself rehearsed. Observational learning through demonstration is another proven method for teaching procedural knowledge. Effective methods for teaching declarative knowledge (Gagne, Yekovich & Yekovich, 1993) include familiarization and description & definition, as well as presenting paired comparisons (e.g., judging similarity and/or dissimilarity).
SCORM 2004

As discussed above, SCORM 2004 has implemented programming logic that allows for flexible sequencing of courseware. Thus, providing theoretically rigorous instruction with SCORM 2004 depends upon using the sequencing capabilities in a manner consistent with known cognitive learning theory. Specifically, it would be instructionally efficacious to map the three primary constructs of ITS (Expert Knowledge Model, Novice Knowledge Model, and Instructional Model) onto the SCORM 2004 sequencing constructs. Review of SCORM documentation suggests that this map may indeed exist (SCORM Sequencing and Navigation, Version 1.3; SCORM Best Practice Guide for Content Developer, 1st Edition; Best Practices Handbook: Best Practices for Advanced Distributed Learning).

Although the features and capabilities of the ITS constructs are not neatly packaged in three complimentary SCORM 2004 sequencing constructs, they nonetheless exist, albeit somewhat diffusely distributed.
Expert Model

The primary components of an Expert Model may be found in the SCORM Activity Tree, Clusters, and the Activity State Model. The Activity Tree may be built such that it mirrors the semantic network derived from cognitive task analyses. The Clusters contain performance criteria that the learners must attain, while the Activity State Model contains expert performance per lesson.
Novice Model

The Novice Model is the current amount of the semantic network successfully traversed at any given time, and is distributed across the Activity State Model and the Tracking Model. The former monitors the student’s location in the Activity Tree, while the later captures student performance data on objects and activities, and is used by the LMS to determine each student’s path following an attempt on an activity.
Instructional Model

The Instructional Model is the executive agent that drives the tutoring and in SCORM 2004 is primarily located in the Activity State Model, which relies heavily upon the Activity Tree, Tracking Model, and Sequencing Definition Model. The Activity Model monitors the state of the instructional world, referencing the navigational map in the Activity Tree, and determining student progress from the Tracking Model. With this requisite information at hand, the Activity Model decides upon, and effects, course navigation in real time by invoking rules in the Sequencing Definition Model.

Confounding Issues

As mentioned above, there is clearly not a one to one mapping from ITS components to SCORM 2004 data structures. This comparison is further complicated by the fact that these SCORM data structures are abstract in nature, and often terminology is confounded. For example, the Activity Tree is represented in an LMS as a Content Organization. However, a Content Organization can also represent a small portion of the complete Activity Tree. Nonetheless, because all three critical components for ITS are present in the SCORM 2004 sequencing capabilities, intelligent model-based instruction is possible.

Case Study
Cognitive Differences between Expert and Novice Learners

The cognitive processes which differentiate expert versus novice performance have been diligently researched (see Chi, Glaser, and Farr, 1988, for an excellent overview). The classical notion that expertise is a generalized capability, perhaps even innate, has given away to a position which emphasizes the mechanics of information processing. Specifically, the structure and process of acquiring, organizing, storing, and retrieving information. It has never been debated that experts in a domain know more than novices. However, it is somewhat counterintuitive to find that experts in a particular domain learn faster than novices. One might argue that because novices have such a paucity of knowledge, their learning rate would be higher than experts. The classical power curves for performance and learning seem to support this position. However, this assumes a closed set of knowledge to be learned. When there are new data within a domain, experts learn faster than novices. The question is why? And the answer is because they already know more.

Consider structure of knowledge in human memory. Experts have well organized knowledge structures which interrelate all aspects of the content domain. Their conceptual knowledge of goals is directly associated with the procedural knowledge required to attain the goals, which is in turn directly related to the declarative knowledge required to perform the procedures. All knowledge types are contextualized with each other. Experts are aware of why they are acting, and how they need to act, and what supporting data are necessary to act. In comparison, novices typically had very sparse knowledge structures that are not conceptually organized. Thus they often perform poorly because they know neither what the goals are, nor what procedures to perform to attain them, nor even what data are required to perform the processes (see e.g., Sternberg and Frensch, 1991).

Consider the processes of encoding and subsequently accessing knowledge from human memory. These processes require attentional effort. A useful way to model attentional effort is to assume that attention is a finite resource. Thus engaging in cognitively effortful tasks will subsume significant attention, leaving little attention for other tasks. Experts use much less attention in processing new data within their area of expertise than do novices. Experts have well elaborated knowledge structures which they can readily access to contextualize new information, and thus facilitate its incorporation into the existing knowledge structures. Experts know why new knowledge is meaningful, and how it relates to prior knowledge. And they know this because 1) they have preexisting knowledge structures which already contain contextual knowledge and 2) they have highly automated (i.e., highly practiced) processes for accessing their preexisting knowledge structures (for seminal research on cognitive automaticity theory see e.g., Schneider & Shiffron, 1977; Shiffrin & Schneider, 1977; and Posner & Snyder, 1975).
Cognitive Considerations for Instruction

Given the above discussion, what should be considered when instructing novices? First, it must always be assumed that they require context during instruction. Specifically, they must constantly be informed as to why they are learning (conceptual knowledge, i.e., goals), and what they need to do in order to achieve the goals (procedural knowledge, i.e., behaviors and processes), and what data are necessary to perform the processes (declarative knowledge, i.e., names, categories, and facts). Experts know these things. They can simply access their preexisting knowledge structures. Novices do not know these things, and thus they need to be constantly informed. Second, it must always be assumed that novices will be operating at the limits of their attentional resources. Often, novices simply don’t have sufficient attentional resources to assimilate a complex concept or procedure into long term memory.
The Response of the BEAM Course to Cognitive Considerations for Instruction

To remediate against both of these realities of novice learning, The BEAM course employs cognitive prosthetics in the interface. The interface is designed to offload some of the organizational work of contextualizing across knowledge types. Thus, as the students progress through the course, the interface gives them access to conceptual, procedural, and declarative knowledge in real time. In this way the relationships between the knowledge types were explicit, and the students are not required to deduce a relationship with knowledge in long term memory. This technique promotes learning in novices because 1) they have limited prior knowledge with which to deduce relationships in the first place and 2) without external support, the attentional load resulting from organizing across knowledge types could easily exceed their attentional capacity.
Using SCORM to Implement the Response of the BEAM Course to Cognitive Considerations for Instruction

The methods referenced above were implemented in SCORM by building SCOs which emphasized different knowledge types and then accessing them simultaneously for both instruction and remediation. The interface allowed the students to access multiple SCOs simultaneously during instruction. ITS systems have typically provided this capability through proprietary coding methods. Alternatively, this capability could be provided with previous versions of SCORM by building large, self-inclusive SCOs which contained proprietary code, with sequencing occurring within the SCOs. This defeats the intended purpose of SCORM which was to build small modular SCOs that would be sequenced through an external algorithm. SCORM 2004 now has that capability. Further, the remediation is done by assessing performance across several SCOs simultaneously, and then branching to the appropriate SCO for additional instruction. This capability is provided through the “Roll-up” feature of SCORM 2004.
Conclusion

SCORM 2004 now has the capability to instantiate the three basic constructs of an ITS, the Expert Model, the Student model, and the Instructional Model. Further, SCORM 2004 allows for nonlinear sequencing based upon simultaneous assessment of multiple SCOs. As noted in the case study above, this capability allows for the instantiation of ITS principles based upon proven and rigorous cognitive learning theory that was otherwise only realized through proprietary coding. However, it must be noted that implementing ITS techniques requires a thorough understanding of the SCORM 2004 sequencing structures because the ITS constructs are not clearly defined in SCORM 2004 (i.e., they are each spread out across a variety of structures). Inconsistent terminology further hinders ITS experts from using SCORM 2004.
References

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA; Harvard University Press.

Baddely, A. (2000). Short-term and working memory. In E. Tulving & F.I. M. Craik (Eds.), The Oxford handbook on memory (pp.77-92). New York: Oxford University Press.

Ball, R. (2001, November). Sequencing: Where We Are and Where We Are Going?. Presented at Plugfest 5. Orlando, Florida.
Chi, M. T. H., Glaser, R., & Farr, M. (Eds.) (1988). The nature of expertise. Hillsdale, NJ: Erlbaum.

Chuba, E., Pasini, N., Scillia, G., & Sobieszczyk, F. (2002, July). Implementing Simple Sequencing. Presented at Plugfest 6, Defense Acquisition University, Fort Belvoir, Virginia.

Dargue, B., & Perrin, B. (2003, October). Content Development – Lessons Learned – The Boeing Company. Presented at Plugfest 8, Carnegie Mellon University, Pittsburg, Pennsylvania.

Gagne, E., Yekovich, C. W., & Yekovich, F. R. (1993). The Cognitive Psychology of School Learning. New York; Harper Collins College Publishers.

Gick, M. L., & Holyoak, K. J. (1980). Analogical Problem Solving. Cognitive Psychology, 12, 306-355.
Haynes, J. (2005, February). Sequencing and Navigation in Simulation-based Training. Presented at Plugfest 9, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland.
Johnson, Z. (2005, February). Operation Desert SCORM. Presented at Plugfest 9, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland.
Nieves, K., & Craft, Rosemary. (2001, May). Defense Acquisition University (DAU)’s Lessons Learned During SCORM Implementation. Presented at Plugfest 4. Alexandria ADL Co-Lab.
Panar, A., & Smith, Stacey. (2002, December). Sequencing Overview and Demonstration. Presented at Plugfest 7, Orlando Convention Center, Orlando, Florida.

Panar, A., & Thropp, Schawn. (2003, October). What’s New in SCORM Version 1.3. Presented at Plugfest 8, Carnegie Mellon University, Pittsburg, Pennsylvania.
Posner, M. I., & Snyder, C. R. R. (1975). Attention and cognitive control. In R. Solso (Ed.) Information processing and cognition: The Loyola Symposium (pp. 55-85). Hillsdale, NJ: Erlbaum.

Robson, R. (2001, May). Saba Software: SCORM Report. Presented at Plugfest 4. Alexandria ADL Co-Lab.

Rehak, D. R. (2001, May). Content Product/Sequencing Briefing by Carnegie Mellon University (CMU). Presented at Plugfest 4. Alexandria ADL Co-Lab.

SCORM Sequencing and Navigation, Version 1.3, January 30, 2004, Joint ADL Co-Lab.

SCORM Best Practice Guide for Content Developer, 1st Edition, February 28, 2003, Carnegie Mellon Learning Systems Architecture Lab.
Schneider, W., & Shiffrin, R. M., (1977). Controlled and automatic human information processing. Psychological Review, 84, 1-66.
Shiffrin, R. M. & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending, and a general theory. Psychological Review, 84, 127-190.
Sternberg, R. J., & Frensch, P. A. (Eds.) (1991). Complex problem solving: Principles and mechanisms. Hillsdale, NJ: Erlbaum.
Best Practices Handbook: Best Practices for Advanced Distributed Learning, Joint ADL Co-Lab.

Steuck, K. (2001, May). Tutortek Information Technology Tutor and Intelligent Tutoring Systems. Presented at Plugfest 4. Alexandria ADL Co-Lab.

Steuck, K. (2002, August). TutorTeck.com. Presented at Plugfest 6, Defense Acquisition University, Fort Belvoir, Virginia.

PAGE
1
Mapping Intelligent Tutoring System (ITS) Constructs to SCORM 2004 Data Structures

