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1.
Overview

For this effort, Intelligent Automation, Inc has designed and developed SITA ( Simulation-based Intelligent Training and Assessment), a prototype architecture for integrating SCORM-complaint Instruction with HLA-complaint Simulation. 

To demonstrate our system, we have built a one hour instructional course that incorporates a pre-existing simulation, the Collaborative Regional Flow Control (CRFC) Decision Support Tool (DST). This teaches Air Traffic Flow Coordinators (TMCs) to optimize air traffic flow through regions of airspace under their control. The complex relationship between user settings and the resulting airspace utilization requires significant skill on behalf of the TMC.  The deliverable under this effort is a system that elegantly incorporates didactic instruction, performance demonstration, guided simulation, performance-based assessment and written assessment into a unitary learning experience. 

Section 2 describes the engineering design for the prototype. Section 3 describes the software design.  Section 4 gives an overview of the CRFC-DST simulation. Section 5 describes the Instructional design. Section 6 describes the software implementation. Section 7 will serve as the user manual and Section 8 contains the installation procedure for the various components.

2. Engineering Design

This section describes the design requirements for the SCORM-HLA prototype system and the engineering design to accomplish the design requirements.

2.1
Requirements

In order to develop the SITA prototype, the following set of requirements was decided upon.

1. The prototype system shall provide a channel for communication between the LMS and the CRFC simulation.

2. The prototype system shall transmit and translate user and control data to and from the LMS (SCORM format) and the CRFC simulation (HLA format).

3. The prototype system shall evaluate user performance outcomes using efficiency metrics provided by the simulation.

4. The prototype system shall support the initialization of a group CRFC federates, to allow for simultaneous multi-user training. 

5. The prototype system will provide a centralized capability to start and stop a group of CRFC simulation federates.

6. The prototype system will have the capability to co-ordinate execution of a group of CRFC simulation federates.

Section 2.2
 gives an overview of the SITA architecture design that accomplishes all these requirements.

2.2 Architecture Overview
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The SITA architecture was developed as a prototype to evaluate the feasibility of developing an architecture to meet the above requirements. To demonstrate feasibility, Air Traffic Management (ATM) was adopted as the domain of instruction and the HLA compliant Collaborative Regional Flow Control (CRFC) Decision Support Tool (DST) was adopted as the simulation federation. 

The basic architecture of SITA, shown in Figure 1, consists of the Learning Management System (LMS), the CRFC-DST Simulation and three major interface modules, RTI-SCO interface module, Simulation Manager and the Launcher/Collector Applet, which together enable communication between the LMS and the HLA Simulation.  

Information flow in this infrastructure is as follows - Upon initialization, the student’s simulation settings are read from the Learning Management System (LMS) by the Sharable Content Object (SCO). The SCO then launches the simulation by sending a start simulation command to the Simulation launcher/collector applet, which runs in the same client browser context as the instructional content (SCO).  The applet connects to the Simulation Manager. The Simulation Manager starts both the RTIexec, and the simulation federates. The GUI federates will be displayed on the same client machine as the SCO (but not in the browser). Communication between simulation federates and the LMS is achieved via the RTI-SCO Interface, the Simulation launcher/collector applet and the LMS Adapter.  The initialization, status update and termination processes in SITA are shown in Figure 2.  

Each of the components is described in greater detail in Section 2.3.

s
[image: image3]
Note: In the Terminate Simulation branch in figure 2, the termination criterion is dependent on the domain of instruction and the goals of the concerned instruction. In SITA, our simulation domain is Air Traffic Control, where we deal with real ETMS data, choosing a time-constrained termination criterion makes more sense. We have chosen a timeout condition of 60 seconds to stop the simulation. This period gives a student sufficient time to read and analyze the feedback from the system and proceed to the next lesson.

2.3 Subsystem Design

2.3.1 RTI-SCO Interface
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The RTI-SCO Interface module allows the exchange of information between the SCO and the CRFC federates. The CRFC federates are built on the CybeleHLA agent infrastructure that uses channel spaces to communicate between agents.  To operate within the Cybele agent infrastructure, the RTI-SCO Interface is wrapped as a CybeleHLAgent federate. Hence, the RTI-SCO Interface subscribes to the same channel space for accessing data. The data obtained from the CRFC federates will be unpacked and repacked as a SCO-understandable data object before being transmitted to the SCO.

Some of the data to be exchanged between the CRFC-DST (simulation) and the simulation SCO via the RTI-SCO Interface federate are as follows:

From CRFC-DST to SCO:

From user input: 

(i) 
Jet routes on which a flow constraint should be imposed 

(ii) 
Airports on which flow constraints should be imposed 

(iii) Weights on metrics corresponding to  throughput, system wide delay, and controller workload used by the optimizer 

(iv) Duration for which the flow constraints should be imposed.
From simulation:

(v) Airspace efficiency metrics computed by the DST after implementing the flow constraints based on the input parameters.

From SCO to CRFC-DST:

Every time the simulation is started, initialization data is transmitted so the simulation can be initialized at a particular point depending upon the scenario.

2.3.2 Simulation Manager
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The simulation manager software’s primary function is to control the start-up/shut down of CRFC-DST federates as well as the RTI-SCO Interface federate.

The Sim Manager (figure 4) consists of two major parts: 

· Every machine has a server component that can start/stop its federate processes. 

· The controlling machine has a client component that can issue start/stop commands to each of these servers.
2.3.3 Simulation Launcher/Collector Applet

This component is a Java Applet which, together with its sub-classes, carries out the following functions.

· Acts as an interface between the SCO and the Simulation Manager, to start or stop the simulation.

· Acts as an interface between the SCO and the RTI-SCO Interface, to save user performance data.

· Decodes and evaluates effectiveness (assessment) metrics provided by the CRFC simulation, and provides these to the SCO. 

2.3.4 LMS Adapter

The LMS adapter is an Active-X object that provides a browser-based (JavaScript) interface to LMS functionality.  The interface allows the SCO to communicate to the LMS using the SCORM 1.2 Run Time Environment (RTE) standard API. The SCO uses this adapter, the store and retrieve user-specific information on simulation state (initial, completed, error), personalization parameters, and performance data on the LMS. 

2.4 Addition of a Database to the current architecture

Following up on the discussions at Design Review meeting (in Jan 2004) and Midterm Review meeting (April 2004), the original SCORM-HLA prototype architecture was modified to include an external database for storing status information about the simulation and training. Simulation information stored in the database would augment the student information stored in the LMS.

This is an optional module that, though not necessary for the SITA architecture, will make the architecture powerful enough to support more complex simulations that handle large number of parameters and lot of data.

2.4.1 Integration with current architecture
Currently, the Database server is hosted on the same machine as the Applet server and can be accessed by the SimLaunchCollectApplet.   The simulation database, SITAdb, currently has one table, SimTable (ref. table 1). The attributes in the table are the minimum needed to store/track the simulation status. As the instruction & software design progresses, the set of attributes will be updated.

	Attribute Name
	Description
	Source

	UserName
	Name of student (in current session of the course)
	LMS

	UserId*


	ID of student (in current session of the course)
	LMS

	TrainingType


	Type of Training 

( Individual, Team)
	LMS

	PartnerId


	ID of partner (in case of team training)
	LMS/Simulation

	WeightsSelected


	User-input Parameter 
	CRFC-DST Simulation

	FlowCandidatesSelected


	User-input Parameter
	CRFC-DST Simulation

	PerformanceMetrics


	Assessment metrics (computed by the Simulation)
	CRFC-DST Simulation


*Primary Key

Table 1:  SimTable

3. Software Design

This section describes the functional and software implementation of SITA that integrates HLA-compliant technology with SCORM-based instruction. The capabilities defined primarily deal with interface design for interaction between major components of the system. This will allow developers to gather a picture of the behavior and system performance. 
3.1 Component/Interface Class Design

The SCORM/HLA prototype architecture consists of four major subsystems. These are:

· RTI-SCO Interface: facilitates data exchange between the Collaborative Flow Control DST and the SCO.

· Simulation Manager: co-ordinates start-up/shut down of remote federates from a centralized location. 

· Simulation Launcher/Collector Applet: acts as an interface between the RTI-SCO Interface and the SCO.
· LMS Adapter: interfaces the SCO to an LMS supporting the SCORM 1.2 Run Time Environment (RTE) API.

[image: image6]
Figure 5  gives the overall class diagram. The software design of the various components are described in greater detail in the sections to follow.

3.1.1
RTI-SCO Interface

Here, the main classes used for the interface are given in greater detail (figure 6).
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Class RtiScoInterfaceActivity
This activity is launched from RtiScoInterfaceAgent class. It gets messages containing user inputs parameters and DST performance metrics. Its callback method sendParams first invokes unpackMessage which unpacks the message into a format that can be interpreted by the SCO. It then forwards the parameters to the SimLaunchCollectApplet using RMI.

Class RtiScoService

This is the server side of the SimCollectorClient. It resides on the same sever as the RtiScoInterfaceAgent. It receives messages from the RTIScoInterfaceAgent and sends it to the SimCollectorClient using RMI callback mechanism.

Figure 7 shows a sequence diagram for the RTI-SCO interface allowing exchange of data between the Collaborative Regional Flow Control DST GUI (GUI2 Federate) and the SCO. This interface is wrapped as a CybeleHLA agent in the CRFC-DST federation. The RtiScoInterfaceAgent opens a message channel, on which it receives user inputs parameters and DST performance metrics, by calling a CybeleHLA API, Activity.OpenChannel. 

When a user alters input parameters using the CFRC DST GUI2, Java Swing triggers a Swing event in GUI2. This event invokes Activity.sendAll to send a message with the user defined input parameters.  

When the GUI2 federate receives airspace efficiency metrics computed by the DST federates, it sends these metrics to RtiScoInterfaceActivity as a message using Activity.sendAll. 

When RtiScoInterfaceActivity receives the messages on the open channel, its corresponding callback method, sendParams, sends the message back to the SimLaunchCollect Applet using Java Remote Method Invocation (RMI). 
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3.1.2
Simulation Manager

The CRFC-DST federates are typically distributed across multiple machines. The simulation manager software’s primary function is to coordinate the start-up/shut down of these federates.

The Sim Manager consists of a server component that is present on every computer running a federate. This code accepts Java Remote Method Invocation (RMI) commands and can start and end processes on the machine on which it is running. 

The client component, a Sim Manager Client, resides on the same server as the code for the SimLaunchCollect applet. This component controls the federate servers by sending start and stop commands.  Communication between the Sim Manager client and the servers is via RMI over http sockets.

Some of the major classes used in the simulation startup software are:

Class SimManager

This is the main class which controls the major functionalities. It accepts start/stop commands from the SimLaunchCollect Applet and uses RMI to remote start/stop federates on remote machines. It can also send initialization/setup data from the SCO to individual federates. The SimManager resides on the same server as the Applet.

Class RMIClient

SimManager uses this class to communicate with the remote computers that run the various federates. RMIClient has specialized methods start and stop each of the CRFC simulation federates (DST1, DST2, GUI1, GUI2) as well as the RTI-SCO Interface federate. 

The client also accepts setup data (e.g. Initialization parameters) that allows it to start/renter a federate at a particular point.

Class Service

This is the server side of the Simulation Manager program. A copy of Service runs on each computer that runs a federate. It receives commands from the RMIClient and can start/stop various federates.

3.1.3
Simulation Launcher/Collector Applet

This component felicitates the exchange of simulation data between the RTI-SCO Interface and the SCO. It also sends messages to the SimManager to start/stop the simulation. It runs in the SCO/browser environment as a java applet and interacts with the SCO using JavaScript-Applet communication protocols. 

The applet invokes the following classes to carry out its functions.

Class SimCollect

This is an RMI client class which gets messages (in SCO interpretable format) from the RtiSCoInterface federate and passes them to the SCO (as XML) using Applet-JavaScript communication calls. 

Class SimLaunch

It gets execution state commands (start/stop) from the SCO and sends them to the SimManager to initialize/terminate simulation federates.  

It also sends setup information from the SCO to the SimManager for initializing various federates. 

Class SimAssessment

This class gets the user defined input parameters and the airspace efficiency metrics obtained from the simulation, performs assessment based on instructional design criteria, and encodes it into performance metric format and sends it to the SCO.

3.1.4
LMS Adapter

The LMS Adapter is a JavaScript API wrapper that allows communication between the SCO and an LMS that supports the Run Time Environment (RTE) API.  All communication between the LMS Adapter and the SCO must be initiated by the SCO, as SCORM currently does not support a mechanism for the LMS to initiate calls. The SCORM RTE data model elements used are given in Appendix 1.
The LMS adapter has the following methods:

Execution state

The following functions handle the execution state of the LMS.

doLMSInitialize()

Initialize communication with LMS by calling the LMSInitialize function which will be implemented by the LMS.

doLMSFinish()

Close communication with LMS by calling the LMSFinish function which will be implemented by the LMS

getAPIHandle()

Returns the handle to API object if it was previously set, otherwise it returns null

findAPI(win)

This function looks for an object named API in parent and opener windows.

Data Transfer

The functions given below are used to transfer data to and from the LMS.

doLMSGetValue(name)

Wraps the call to the LMSGetValue method. It takes in as input, a  string representing the cmi data model defined category or element (e.g. cmi.core.student_id) and returns the value presently assigned by the LMS to the cmi data model

element defined by the element or category identified by the name  input value.

doLMSSetValue(name, value)

Wraps the call to the LMSSetValue function. It takes in as input a name string representing the data model defined category or element and returns the value that the named element or category will be assigned.

doLMSCommit()

Call the LMSCommit function  

State Management

The following functions handle errors.

doLMSGetLastError()

It call the LMSGetLastError function  and returns the error code that was set by the last LMS function call.

doLMSGetErrorString(errorCode)

It calls the LMSGetErrorString function  and returns the textual description that corresponds to the input error code

doLMSGetDiagnostic(errorCode)

It calls the LMSGetDiagnostic function. It accepts as input an Error Code and returns the vendor specific textual description that corresponds to the input error code. 

3.1.5 DatabaseManager 

This is an optional module (as described in Section 2.4) for storing training status data. This is the main class for interfacing with the MySQL database server. DatabaseManager class contains methods for initialization, updating, and querying of tables in the database. The class currently resides currently on the same machine as the Applet server. However, in future, the MySQL Database server and the DatabaseManager class could be installed on a separate server. Here the DatabaseManager class would be a RMI server and the other components of SITA would communicate with the database over http sockets.

Figure 8 shows the initialization process for SCORM/HLA prototype system. Figure 9 shows the sequence diagram for performance status update. For purposes of clarity, the sequence of activities between the RtiScoInterface federate and the CRFC federates are given separately in figure 7. Figure 10 shows the termination process for the SCORM/HLA simulation.
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	Function
	Data Model Elements
	Purpose

	Personalization parameters
	cmi.core.student_id

cmi.core.student_name


	used to personalize simulation presentation.

	Performance data
	cmi.core.score.raw

cmi.core.score.max

cmi.core.score.min


	Native simulator performance metrics stored as a list of score elements. These could form part of an overall performance outcome measure.

	Overall status
	cmi.core.lesson_status
passed/ completed/ failed/ incomplete/ not attempted
	Overall simulation status could be determined from the overall score. This outcome could then be used for student tracking and sequencing.



4. HLA-compliant Simulation: Collaborative Regional Flow Control -Decision Support Tool (CRFC-DST)

The Collaborative Regional Flow Control (CRFC) Decision Support Tool (DST) was adopted as the simulation Federation.  In addition to being HLA compliant, CRFC is an agent-based simulation thus enabling the evaluation of intelligent instructional paradigms or team training  where an “agent” play the roles of team-mates.

[image: image12]
The CRFC tool takes inputs from TMCs such as jet routes and/or airports on which a flow constraint should be imposed; weights on metrics corresponding to throughput, system wide delay, and workload; and duration for which the flow constraints should be imposed  and then determines optimal flow constraints across the region boundaries based on these input parameters. These flow constraints are then used to simulate traffic flow and compute the resulting efficiency of the airspace. The resulting efficiency is presented as airspace utility graphs (See Figure 11).

The DST can be used by an individual TMC (with other TMC’s simulated by autonomous agents) or in a team mode, with two or more TMCs collaborating to optimize flow across their boundaries. 

The top-level CRFC-DST architecture is shown in Figure 12. At its lowest level the architecture contains a number of communications protocols, including the HLA-RTI for run-time simulation communications, SQL/XML for data initialization and storage, remote method invocation (such as SOAP or CORBA) and standard web HTTP protocols, used outside run-time for access to model and data repositories.

Above this layer, the architecture contains an agent-based simulation framework. The agent-based modeling and simulation framework, built on IAI’s CybeleHLA( agent infrastructure (see http://www.opencybele.org), provides a software layer between the models and the HLA RTI.  CybeleHLA is built on top of the JavaTM 2 platform and provides the runtime environment for control and execution of agents.  
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Figure 12: CRFC-DST Architecture

The Applications layer of the architecture consists of applications built on this common core infrastructure. This includes simulation federates as well as utilities such as simulation control, visualization, data collection, and analysis tools. 

Communication between federates is primarily done using HLA interactions. Conversion between Cybele communications notions (serialized Java objects over message channels) to RTI notions (FOM objects over RTI Data Management or Data Distribution Management) is done by the infrastructure transparent to the user. The infrastructure handles complex objects by converting their complex components into XML strings. These strings are then passed as RTI attributes and are reconstituted at the receiving end.
4.1  CybeleHLA Infrastructure


As described in the previous section, the CRFC-DST federates are built on an  agent-based modeling and simulation framework, IAI’s CybeleHLA( agent infrastructure (see http://www.opencybele.org), which provides a software layer between the models and the HLA RTI.  The key functions of the CybeleHLA simulation infrastructure are to provide the glue that combines the independent federates CRFC federation into a single coordinated unit. This involves providing functions in three key areas: Communications, Time Management, and Coordination. Other key infrastructure functions including event management are built on these services.

4.1.1
Communications

The CybeleHLA simulation infrastructure supports communications between federates and federate computers. This involves passing the messages and data used to implement other infrastructure functions. It includes exchange of messages at runtime under the control of time management (further described in the next section). Runtime communications makes efficient use of network bandwidth to allow the system to meet its performance requirements without encountering bottlenecks due to networking delays or capacity limits. Because of the analytical nature of the system, runtime communications between federates uses reliable communications mechanisms.

The communications implementation supports four standard protocols:

· HLA RTI (High Level Architecture Run-Time Infrastructure) – Used for runtime communications between federated simulations. Provides high performance messaging, synchronization and control of simulation applications.

· RMI (Remote Method Invocation) – Used for distributed control of applications and interaction between client-server applications. Provides a synchronous, client-server interactions between system applications. Used for remote simulation start-up and data distribution.

· ODBC/JDBC (Open/Java Database Connectivity) – Used for storage and retrieval of data from databases. 

· HTTP (Hypertext Transfer Protocol) – The standard protocol for the web. Not used within the system for Phase 3, but available both as a transport for RMI (via the SOAP protocol) and more typical web-based applications.

The CybeleHLA architecture also specifies certain data definition and manipulation standards for run-time and post-runtime data, as follows: 

· FOM (HLA Federation Object Model) – The FOM defines the data interface between the federates comprised by the CRFC federation. The combination of the FOM, the RTI interface and federation agreements forms a complete inter-federate interface specification. In CRFC the FOM extends into the federates as well, as individual agents communicate using FOM messages. 

· XML (Extensible Markup Language) – XML provides data formats that can easily be read and written by a range of applications using readily available parsers and editors. 

· SQL (Structured Query Language) – SQL is a common language used to define and manipulate relational databases. 

These various communications techniques provide a broad spectrum of capability for inter-application interaction. Furthermore, all of these protocols provide a layer of insulation between application and the operating system which eases cross-platform, cross-language issues, manages transport protocols and takes care of message fragmentation and reassembly. 

4.1.2
Time Management

Time Management is a feature that is somewhat unique to simulations. Each federate’s models are required use causally correct information, that is, information that is complete up to the federate’s understanding of current time but not beyond. So, for example, in CRFC, an TFM model performing a calculation of sector density at time T must make sure it has all of the aircraft position and intent as of time T, but that no aircraft have reported positions or intent past time T. Satisfaction of such a constraint requires that the infrastructure provide federation-wide coordination of time and integration of inter-federate messaging with the time coordination mechanism to ensure that messages always arrive in time-sequenced order.  Such coordination is required to assure the required level of temporal ordering, that is, to ensure that events in the simulation scenario play out in correct order regardless of network delays between simulations, computational loading on computers or other physical-space influences on the system’s execution. Such ordering is required for repeatability. Repeatability is the ability for a simulation to produce identical results each time it is run with the same inputs. While repeatability is not absolutely essential for all applications it is a useful characteristic for analyzing simulation results and is useful as well as during simulation development.

CRFC is HLA-compliant and so is required to use the RTI’s time management service as a basis for implementing time management requirements. The RTI provides a time management service to coordinate the exchange of events between federates. In a federation, time progresses forward. However, the perception of the current time may differ among participating federates. Time management is concerned with the mechanisms for controlling the advancement of each federate along the federation time axis. In general, time advances must be coordinated with data distribution services so that information is delivered to each federate in a causally correct and ordered fashion. 

CybeleHLA extends the RTI’s temporal ordering to also guarantee ordering at each point in time). The Cybele time management approach is a conservative parallel scheme. In this approach each federate maintains its own version of time. To advance time a federate requests permission to advance time from the RTI. The RTI, which is cognizant of the current time in all federates, grants time advances as federates become able to advance time. This prevents any federate from falling out of synch with the other federates, either by running out ahead or by falling behind.  Thus, in RTI terms, CRFC simulation federates are both being time regulating and time constrained. More information on RTI time management can be found in RTI documentation.

As described above, the RTI is a coordinator of time. It is up to each federate to manage its own advancement of time, which may be driven by events, a time loop or some connection to wall-clock. Advancement of time in CRFC is discrete event-based and so proceeds as indicated by the various federates. The infrastructure supports time advancement in uniform steps or in unequal increments. The exact details of time advancement depend on the particulars of the simulation models.

4.1.3
Coordination

CybeleHLA’s coordination functions are essential for the communications functions needed for Simulation Execution Management (SEM) applications to monitor and control the execution of the federation. Control functions include remote federate start-up, initial time synchronization, start, stop, and pause and resume functions and simulation speed control. The management aspects of these functions are implemented via associated RTI functions, while each individual federate responds appropriately to management requests. 

SEM monitoring functions focuses on health monitoring. Through code running on each federate computer, SEM monitors the health and computational load on each of the federation’s computational resource. SEM may also monitor network traffic for traffic overloads and bottlenecks. 

4.1.4
Event Management

CRFC is an event-based simulation. Federates exchange information by exchanging time-stamped data messages. In CRFC, messages are required to be delivered in guaranteed order, that is, in timestamp order and within a guaranteed, reproducible order for multiple messages bearing identical time-stamps. The system uses the RTI’s capabilities to distribute messages under the auspices of time management.  

5. Instructional Design

SITA illustrates three instructional uses of simulation:  

1. Pre-assessment of knowledge, where the learner is asked specific questions about a portion of the running simulation he/she is observing, where the questions can be modified independently from the simulation (in a SCO).

2. Practice of skills, where the learner can use knowledge information he/she learned through didactic instruction (instructor-directed content acquisition), or interactive instruction (instruction using multiple sequences of information presentation-student activity-feedback-next presentation).  Either of these can be used individually or as part of a team.  For both of these scenarios, the learner(s) receive immediate feedback in the form of specific results shown in the simulation.

3. Final assessment, where the learner’s relevant knowledge (facts) and skills (performance) can be assessed within a single, cohesive training and assessment environment, providing immediate feedback and specific, targeted remediation as necessary. 

5.1
Requirements

 The Instructional Design requirements for SITA were:


1. Use simulation for interactive instruction, practice, and assessment.  

2. Provide a variety of instruction methods: didactic, interactive, and simulated.

3. Provide activities for individual practice in monitoring and controlling air traffic flow within a designated air space.

4. Provide activities for collaborative practice in predicting and managing flow control over contiguous sectors of air space.

5. Provide motivating, game-like interactivity.

6. Assess individual and group outcomes.

7. Provide assessment formats, including performance-based and open-ended text.

8. Adapt the instruction to meet each learner’s needs, as indicated by individual and group assessment performance.

The SITA SCOs include didactic instruction, simulations, and assessments.  Components of the courseware are completed in order, and each component can be launched only when the previous one has been completed successfully. The following SCOs are used in the instruction:   (1) Pre-test; (2) Didactic instruction; (3) Interactive instruction; (4) Individual simulation; (5) Team simulation; and (6) Post-test. The instruction design for Pre-test is given in figure 14. The instruction design for the Didactic SCO is given in Figure 15. The design for the Interactive SCO is given in figure 16. The designs for Individual and Team simulation instruction SCOs are given in Figure 17 and Figure 18 respectively.

NOTE: In the SITA prototype we have used a LMS that supports SCORM 1.2.  At the time of contract award, and until very recently, there has been no available LMS supporting SCORM 2004 that provides instructional features that would allow for implementation of an ‘intelligent’ system.  Currently there is no means of differentiating instruction between trainees based on assessment outcomes or on performance within the instruction.  Furthermore, there is no means of controlling the sequence the SCO’s to ensure attainment of required knowledge and skills in a logical order.   

However, the SITA instructional design has been created with sequencing/branching keeping SCORM 2004 in mind. We have just implemented a sub-set of the branches keeping the limitations of SCORM 1.2 in mind. 

We have proposed that now, given recently availability of LMS products that support the sequencing rules in SCORM 2004, (1) re-implemented the SITA prototype  using a SCORM 2004 LMS to control the sequence of SCO presentation. (2) Design and develop eight new SCO’s, to demonstrate adaptive instruction with SCORM-conformant learning objects and HLA-conformant simulation.  Here, Sequencing should based on performance on objective assessment items, performance on tasks within an interactive SCO, and performance within the simulation.

5.2
Use of Simulation in Instruction

The CRFC-DST simulation is used throughout the instruction.     From the outset of instruction, the student becomes familiar with the concepts and actions contained in the simulation, and its motivating, game-like qualities are employed even in assessment.   In didactic instruction, the terms, concepts and interactions inherent in the simulation are specifically taught.  This is not teaching how to operate the simulation, but rather the knowledge needed to become proficient in the CRFC task, as embodied in the simulation.   The instruction can be directed toward individuals or toward a group where the information taught relates to the inter-dependence of decisions between TMCs.  Because SITA is developed using an agent-based infrastructure, team practice can occur either between two or more trainees, or between trainees and autonomous agents.  This is of great benefit when and where teams are not available for synchronous training.

The interactive instruction components show the outcome of a student’s response to a specific question by presenting a screenshot from the simulation illustrating the outcome of his/her choice.    An important element of this interactive instruction is that a team can practice their skills together, with increasingly larger groups of students interacting to view the effect of their control decisions on the efficiency of airspace use over a wider geographic area.  For other domains, this design may be of even greater benefit.  For example, in medical training, a student could be presented with a case, provide a diagnosis and the recommended course of treatment for a disease.  Following this, agents representing various symptoms could then show their reaction to time elapsed and the treatment suggested,  showing, rather than telling the medical student the result of his/her decisions.

Post-testing in SITA is greatly enhanced by using the simulation.  While conventional assessment (i.e., multiple choice items, short answer items, etc.) can be used to measure acquisition of specific information, there is little support for assuming that factual knowledge is sufficient for task performance.  However, in SITA both can be assessed.  SCO’s containing conventional assessment items are administered first. The testing is then augmented by a simulation scenarios to determine whether or not the learner can perform the CRFC task using knowledge he/she has acquired.  The simulation captures specific decisions the trainee has made over a set period of time, as well as the final efficiency metric produced by the DST itself.  This combination of knowledge assessment and performance assessment is a potentially powerful assessment model that warrants detailed further study.
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Figure 16.  Didactic instruction SCO
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Figure 17.  Individual Simulation SCO


	[image: image16.png]
Figure 18.  Team Simulation SCO


6.
Software Implementation

This section outlines the various tools and packages used in developing the SITA prototype.

6.1 LMS

We used Avilar’s Webmentor LMS (SCORM 1.2 support). We received an engineering license for the same from ADL at the beginning to the project.

LMS Installation Details

Server Platform: Windows XP

WebServer: Apache HTTP Server 2.0.47

Database: Microsoft Access 2000.

6.2 Database

We have selected MySQL, a very popular Open Source SQL database, that is developed, distributed, and supported by MySQL AB (http://www.mysql.com). The MySQL software is released under the GNU General Public License (GPL).

Database Server Installation Details
Database: MySQL (version 4.0.14)

Operating System: Microsoft Windows XP.

ODBC driver: MyODBC 3.5.1

6.3 Distributed Communication

Java Remote Method Invocation (RMI) is Java’s implementation of object-to-object communication among Java objects to realize a distributed computing model. It is distributed as part of the standard JDK package. This package allows us to distribute our objects on various machines, and invoke methods on the objects located on remote sites. Three processes participate in supporting remote method invocation. 

· The Client is the process that is invoking a method on a remote object. 

· The Server is the process that owns the remote object. The remote object is an ordinary object in the address space of the server process. 

· The Object Registry is a name server that relates objects with names. Objects are registered with the Object Registry.  Once an object has been registered, one can use the Object Registry to obtain access to a remote object using the name of the object. 

RMI  Security Manager

The security manager handles the security management in the RMI distributed environment. Policy files are used to grant permissions, represented by the Permission classes in the java.security package, to sets of classes or access grants to specific resources.  It is necessary to specify an additional java.security.policy file at runtime with application specific restrictions. A typical policy file would contain settings for atleast the attributes defined in the table below.

	Permission
	Class 

	AWT
	java.awt.AWTPermission

	File
	java.io.FilePermission

	Property
	java.net.NetPermission

	Net
	java.util.PropertyPermission

	Reflect
	java.lang.reflect.ReflectPermission

	Runtime
	java.lang.RuntimePermission

	Security
	java.security.SecurityPermission

	Serializable
	java.io.SerializablePermission

	Socket
	java.net.SocketPermission


6.4 Simulation Infrastructure

The CRFC-DST simulation was built on an  agent-based modeling and simulation framework, IAI’s CybeleHLA( agent infrastructure, which provides a software layer between the models and the HLA RTI.  It is a runtime environment built on the top of the Java2 platform for control and execution of agents.  An Open Source version of Cybele called OpenCybele was released and is available for download at www.opencybele.org. Today OpenCybele has over 300 downloads and is being used in several government, university and commercial applications.

7.
User Guide 

This section contains step-by-step instruction for using the SITA system.

1.  Figure 19 is the page the student sees on login. The page presents the course outline in a hierarchical (tree) format. The general format of instruction is COURSE-LESSON-TOPIC.

The student can navigate through the tree by clicking on relevant topics. Once the student has completed a SCO, it is marked by a tick mark on the left of the topic.

[image: image17.png]

2. On clicking a topic name in figure 19, an instruction window (figure 20) pops up. 

Figure 20 is the introductory screen for the course. It plays an .avi movie in which the new concept is introduced and contrasted with the old one. It also gives the student an indication of what to expect in the next 60 minutes.

Figure 21 shows a close-up of the navigation bar on top of the screen. This bar is common for all the screens. The students can also choose to navigate within a lesson (SCO) using the navigation functions here. Note that the help and glossary functionalities have currently not been implemented.

(NOTE: We expect the student to proceed through the course sequentially. In SCORM 1.2, there is currently no way to present information other than in a hierarchical fashion. Hence we cannot prevent students from skipping sections)
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3. Figure 22 shows a sample pretest. The pretest contains true-false, fill-in-the-blanks, and multiple choice type questions. At the end of the pre-test, the student clicks the “Submit” button.  On doing this, the scores are stored by the SCO in the LMS and the student proceeds to the next SCO.
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4. Figure 23 shows a sample page for the Didactic instruction SCO. The didactic instruction style combines text, images and audio modalities to present information. The pages are prepared using Macromedia Flash. The orange controls at the bottom of the screen are for controlling the flash movie.

You would need Macromedia Flash 6.0 or higher installed on your machine for this. Also, a speaker or headphone would be necessary to hear the audio.

[image: image21.png]

5.  Figure 24 is the SCO for the Interactive Training lesson. Here the student reads the scenario described on the right of the screen and then accordingly manipulates the applet shown in the center of the screen. In the current scenario, the student is presented a scenario for selecting appropriate weights for flow restriction. The student makes the selection using the slider bars in the applet window and gets an immediate feedback in the feedback window.
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6.  Figure 26 is the screen for the Individual Training SCO. Here the student launches and directly interacts with the CRFC simulation. The steps  involved are as follows:

a.
The student reads the scenario described in on the screen. He/She then launches the simulation by clicking the Start Sim button in figure 26.
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b. The student then clicks on the Announce SynchPoint button in figure 27.  When the All federates started, click Synchronize Federation appears in the window, the student then clicks the Synchronize Federation button. (Note: Several dos command windows pop up. These are information windows popped up by the CRFC simulation and can be ignored).
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c.
As shown in figure 28, Two windows, the NAS Sim window showing the air traffic and the Collaborative Regional Flow DST agent for Center ZOB interface window for the student to interact with.  Note that the simulation has been initialized so that only the necessary aspects of the simulation are active. In the current scenario which deals with setting weights, the student is only allowed to click on the Set Now button next to  “set weights and normalization params”.
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d. On clicking the set now button, the Selection of Weights for Center ZOB pop ups. The student then makes his/her selection for weights for V/C, Delay and Workload by manipulating the sliders. Once the student is satisfied with his/her selection, the student then clicks the Set Weights & Params button. He then clicks the All Parameters are Set button on the main Agent window (figure 28).
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e. Based on the student’s input, the CRFC simulation will now compute the optimal restriction settings. This takes several minutes (~3-5 minutes). At the end of this period,

the resulting efficiency graph and flow restriction suggestions are displayed to the student. (Please refer to the CRFC-DST User Manual for more details). 
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f.  The student then reverts back to the Instruction window (figure 31) where he/she sees the feedback for his/her actions. The feedback could be positive or negative. The student then stops the simulation by clicking on the Stop Sim button.
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7. Figure 32 is the screen for the Team Training SCO. Here 2 trainee TMCs  of neighboring centers collaborate with each other. We have chosen centers ZAU and ZOB for our demonstration scenario. The steps  involved are as follows:

a. Both students (A & B) read the common scenario. The scenario describes a situation in which the students have to make both individual and collaborative decisions. The CRFC simulation is launched from the SCO in the same way as described in 6.a and 6.b.
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b. As shown in figure 33, along with the NAS Simulation window, two windows, Collaborative Regional Flow DST agent for Center ZAU  (for Student A) and Collaborative Regional Flow DST agent for Center ZOB (for Student B) appear.
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c. As described in the scenario, each student first needs to select flow restriction candidates to apply restrictions to. To do this, he/she clicks on the Set Now button next to the Set candidates for flow restrictions (figure 33).

d. In the Selection of the Flow Restriction Candidates for Center ZOB window (figure 34) that pops up, the student then selects one of the three corner-posts given in the scenario. He/she then clicks the Consider button and then clicks Ok.
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e. The student then clicks the All parameters are set button.  
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f. After both students have completed this step, DST computes the projected airspace efficiency due to different restrictions. At the end of the negotiated search, the “equilibrium” optimal flow restrictions are suggested by the DST to the TMCs. This is displayed in the form of efficiency graphs in each of the student TMC’s windows. 

In the collaborative aspect of the scenario, each Student TMC then uses the agent interface to review the estimated airspace efficiencies in their center due to potential restrictions applied by student TMCs in neighboring centers. The student then can either apply DST suggested restriction on his/her selected flow restriction candidate, or override the suggestion by a restriction that he/she feels is more practical or appropriate. 

After making their selections, both students then finalize their selection by clicking the Apply TMC Restriction button in their TMC agent windows.
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g.  Both students then reverts back to the Instruction window (figure 37) where they sees the feedback for their actions. The feedback could be positive or negative. The student then stops the simulation by clicking on the Stop Sim button.
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8. For the skill assessment part of the post-test, the student is given a scenario interacts with the simulation in exactly the same way as in 6. The only the difference is that instead of getting a feedback at the end of the training SCO, the student’s actions are graded and the scores are directly stored in the LMS/ database.
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9. The student then answers a series of objecting question to measure the knowledge gained in the training process.
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10. Figure 40 is the final feedback page. The student can view his performance on the pre-test and post-test and as well as on the individual testing part of the post-test.
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8.
Installation Guide

8.1
Requirements
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Source:

Java SDK:

http://java.sun.com/j2se/1.3/download.html
Apache Webserver:
http://httpd.apache.org/
MySQL:

http://dev.mysql.com/
8.2
Software Installation 

a.
Installation of courseware:

Copy Deliverables/course/SITA containing the courseware to Machine1 under C:\WebMentor\wwwroot\courses\adl which is Webmentor’s default directory for installing SCORM-compliant courseware.

b.
Installation of  SITA Comunication Infrastructure

1. Copy Deliverables/Infrastructure/SITA-1 to Machine1 under C:\SITA

2. Copy Deliverables/Infrastructure/SITA-2 to Machine2 under C:\SITA.

3. Modify rmi startup (*Service.bat) batchfiles under C:\SITA\batchfiles on both Machine1 and Machine2 to reflect domain name on web server. 
For example: 

SimCollectService.bat would look like: 

%JAVA_HOME%\bin\java -Djava.rmi.server.codebase=http://your-domain-name/SITA -Djava.security.policy=http:/ your-domain-name /SITA/policy  -classpath "%SITA_CLASSPATH%;%MYSQL_CONNECT%" RMIclasses.SimCollect

c.
Installation of CRFC-DST Simulation 

You need to install CRFC_DST on both Machine1 and Machine2. 

1. Unzip the files under Deliverables/CRFC-Simulation into a directory (e.g., C:\CRFCdst)

2. Set ‘System’ Environment Variables (this may require administrative privileges for 

   the computer depending upon the operating system).

   a. DST_HOME - This should point to the directory where files are copied (e.g., C:\)

   b. CTO7_HOME - This should be %CRFCdst_HOME%\Delivery\CybeleHLA

   c. CYBELE_HOME - This should point to %CTO7_HOME%\Build1\modules\Cybele

3. Install Java 2 SDK 1.4.x.  This software and corresponding installation instructions can 

   be found at http://java.sun.com/j2se/1.3/download.html.  Note: Uninstall all other Java 

   SDK and JRE first.

   a. Set ‘System’ Environment Variable (this may require administrative privileges for the computer depending upon the operating system).

JAVA_HOME – This variable should point to the home directory where the software was  installed.(e.g., C:\j2sdk1.4.1_01)

4. Install RTI1.3NGv6 and RTI1.3NGV6JavaBindings (RTI and associated documentation can be 

   found at http://sdc.dmso.mil)

   a. Set ‘System’ Environment Variables (this may require administrative privileges for 

      the computer depending upon the operating system).

      i.   RTI_HOME – The extended path directory name of the RTI Installation.

      ii.  RTI_BUILD_TYPE – The build type that was installed, for example the build   type for a Windows 2000 install is Win2000-VC6.

      iii. RTI_JAVA_HOME – The directory extended path of the RTI-1.3NGv6.jar file (e.g. %RTI_HOME%\%RTI_BUILD_TYPE%\apps\javabinding\javalib).  It will need to be added to the CLASSPATH.  CLASSPATH is a ‘System’ environment variable; create one if needed.

      iv.  RTI_RID_FILE – The extended path, including the filename, of the .rid file. 

           The .rid file used is located in the data folder of the Cybele module under the 

           CTO7 directory (e.g. %CYBELE_HOME%\data\RTI.rid).

      v.   %RTI_HOME%\%RTI_BUILD_TYPE%\bin, needs to be added to the Path; Path is a ‘System’ environment variable; create one if it needed.

      NOTE: For the RTI to work properly it will be necessary to reboot Windows after 

            changing environment variables.

5. RID File - The rid file contains parameters used to improve the performance, and run-time behavior of the RTI. The rid file for all tests, RTI.rid, is located in %CYBELE_HOME%/data. If you are planning on running more than one instance of the rtiexec on the network (typically run by running the batch file runRTI.bat) ensure that the multicast discovery endpoint value is unique for each instance of rtiexec that is running.   The multicast discovery endpoint value  in set in  %CYBELE_HOME%/data/RTI.rid, 

     (RtiExecutiveMulticastDiscoveryEndpoint 224.9.9.2:3170)

   Also ensure that this multicast discovery endpoint value in the runRTI.bat  (in %CRFCdst_HOME%\Delivery\bin directory) is the same as that found in RTI.rid.  In runRTI.bat the multicast discovery endpoint value is set in line rtiexec -multicastDiscoveryEndpoint 224.9.9.2:3170

6. This version of CRFC DST uses Cybele-HLA infrastructure developed under NASA ATMSDI CTO7 contract. CybeleHLA.jar can be obtained under NASA ATMSDI CTO7 contract and copied to the following location  <install dir>\Delivery\CybeleHLA\Build1\modules\Cybele\lib

d.
Modifying the Apache Webserver configuration

In the configuration file httpd.conf add:

Alias /SITA "C:/SITA"

8.3
Running SITA

1. Double click on C:\SITA\batchfiles\StartRmi.bat on Machine1 and Machine2 to start the RMI servers.

2. Login to the installed SITA course on the LMS and proceed.  

Figure 2: SITA Operation Flowchart
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Figure 3. CRFC-DST system architecture
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Figure 4. Sim startup/shutdown
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Figure 7.  Federates Interface sequence diagram
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Figure 8. Initialization Sequence
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Figure 9. Termination Sequence
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Figure 10. Performance Update Sequence
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Figure 14: Pre-Test SCO
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Figure 11: Operational Flow of the Collaborative Regional Flow Control Decision Support Tool





Figure 6.  RTI-SCO Interface classes 
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Figure 15: Interactive Instruction SCO
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Figure 1. Architecture Overview



Machine 2



1. Pentium 4, 1Ghz or higher.

2. Operating System: Windows 2000, Windows XP

3. Java: JDK 1.4 or higher 

4.  Apache http Webserver 2.0.47 or higher



Machine 1 (LMS Server)



1. Pentium 4, 1Ghz or higher.

2. Operating System: Windows 2000, Windows XP

3. Java: JDK 1.4 or higher 

4.  SCORM 1.2 complaint LMS (e.g. Avilar Webmentor)

5. Apache http Webserver 2.0.47 or higher

6. MySQL Database Server



Figure 24. Interactive Instruction



Figure 23. Didactic Instruction



Figure 22. Pre-test



Figure 20. Introduction Page
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Figure 13. CybeleHLA Architecture
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Figure 21: Navigation Bar (common for all screens)
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Figure 26. Individual Training



Figure 27. SynchFederate GUI
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Figure 40. Final Feedback
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