Final Report: ADL-R Extensions and the Evolution of CORDRA

Contract No.: N61339-06-C-0085

Title: Scientific & Technical Report – Project Final Report

Date: 31 August 2007

Doc. Ref. No.: A008

ADL-R Extensions and the Evolution of CORDRA

1 Introduction

This is the final project report on CNRI’s FY07 work on the above referenced contract entitled “ADL-R Extensions and the Evolution of CORDRA.” We will describe in detail the activities undertaken and the outcomes produced under Phase I of that contract.
The extensions to the ADL Registry (ADL-R) are intended to enable a common development platform for all future application developers who will work with ADL-R, as well as those organizations wishing to implement variations of ADL-R, while simultaneously providing the necessary basis to allow for the later implementation and deployment of a future Registry of Registries. We are pleased to report that we met all milestones indicated in the statement of work for Phase I and in some areas exceeded the projected results to deliver working implementations of the research outcomes.
This document will provide a brief summary of the outcomes and then will detail the research challenges, outcomes and, in some cases, implementation details for the proposed research topics. Finally we will provide an impact report and general conclusions.

2 Summary

During Phase 1 of this contract CNRI prototyped, tested, demonstrated, and deployed: 1) a Registry Interface Mechanism (RIM) that enables multiple third party applications and clients to communicate consistently with ADL-R as well as enabling CORDRA-level plug-ins to interact with ADL-style registries, including the registry aggregations generically known as Registries of Registries (RofR); and 2) registry extensions, including extensions to RofRs, which will enable them to interact with other registries and RofRs as well as with content repositories and the plug-ins mentioned above.
The version of RIM produced during this period is known as RIM-Lite. The name was chosen to indicate that future RIM functionality is planned. RIM-Lite has been released as part of the Practice Registry version of ADL-R and has been used by third party developers in prototyping new ADL-R services. CNRI has also worked with some of those developers in helping them exploit RIM-Lite to meet their requirements. The initial success of RIM-Lite has been such that it is now planned as the single and definitive interface to ADL-R and future CORDRA registries. The planned new version of the ADL Registry Portal works solely based on the RIM-Lite interface and all users will interact with the Practice and Operational Registries through the RIM-Lite. The initial proof of concept deployment attached to the Practice Registry has scaled to include 15 outside servers in 7 different organizations that regularly use the module to interact with the registry. Applications and services include the development of a new general purpose web portal, automated submission from a content repository, and the development of a web services interface. The current list of participating organizations includes:

· Booz Allen Hamilton (3 servers)

· Outstart Product Strategy (3 servers)

· ADL Alt-i-lab (1 server)

· Intelligent Automation, Inc (3 servers)

· Navy ILE (1 server)

· CTC (2 servers)

· JADL (2 servers)

The second major effort under this contract has been the federation work that will contribute to the realization of CORDRA. CNRI has produced a set of guiding principles for CORDRA federation, which are detailed later in this report, and has prototyped internally a proof of concept Registry of Registries. This RofR has been built as an evolution of ADL-R, primarily through the addition of aggregation modules deployed on top of the RIM-Lite.

3 Research outcomes

CNRI addressed a significant number of research challenges during the execution of this contract. These research challenges can be grouped into two main areas:

· The expansion of registry functionality to facilitate third party application development and ease data collection and exposure.

· The aggregation and indexing of data stored in multiple registries enabling expanded access to distributed resources, in the spirit of the CORDRA approach.

3.1 Registry Interface Mechanism

The core registry has a stable internal HTTP interface sufficient for simple services, but that simple interface required much of the desired functionality of the registry to be built on the client side, with each client application developer required to implement needed functions from scratch even if others had had to implement such functions earlier. RIM-Lite was developed to expose the simple interface to those who needed only that, but also, and primarily, to supply an additional set of commonly needed operations and attributes for use by third party developers and application builders. By providing a standard set of commonly needed functions and attributes, RIM-Lite ensures that multiple applications will yield common results when executing the same tasks, e.g., rendering HTML from XML or grouping and formatting large result sets. The rest of this section summarizes the current state of RIM-Lite, followed by a listing of the research issues we encountered while developing RIM-Lite and the solutions we came to.
In addition to providing a single entry point for enhanced and direct communication with the registry for all applications within a community of practice, RIM-Lite can also be configured to enforce a common set of community policies. In the case of ADL-R, those common policies include virus checking and XML firewalls.
The RIM-Lite HTTP interface supports the POST method for all operations, but in addition supports the GET method for queries. This allows applications that need only simple query to use simple URL links, which are easy to construct.
While the HTTP interface is currently the most important means of interacting with ADL-R via RIM-Lite, additional communication modules can be added to RIM-Lite. As an example of this a SOAP module for web services is currently under development by Booze Allen Hamilton in collaboration with ADL and CNRI.
Although it serves as a gateway between applications and the registry, RIM-Lite does not provide any caching nor does it maintain state for individual applications or users. State-based behavior and operations are a possible extension of the RIM and a good example of the way in which RIM-Lite will evolve to full RIM.
RIM-Lite emulates the registry behavior by generating all responses in XML and will use this encoding as a default response mechanism. RIM-Lite also incorporates a novel mechanism that allows clients to request specific type transformations and currently allows it to generate HTML responses for the case of the generic query responses. This is the TM3 mechanism, which is explained in more detail below.
RIM-Lite maintains verbose logging of all operations but only exposes the full logs to RIM-Lite administrators in order to avoid confusion. Making sense of the verbose logging, without an intervening application, requires both a deep understanding of RIM-Lite and core registry operations as well as programming background.
As part of the RIM-Lite efforts we identified the need to consolidate a number of peripheral administrative functions. The solution to this issue was the addition of a database which stores commonly needed information for administrative applications.
Finally, as part of an overall effort to consolidate registry functions and in the interest of providing more services in a common fashion directly through RIM-Lite, we integrated the Repository Registry functionality into the RIM-Lite. Up to that time, the Repository Registry had existed as a separate registry. Added detail on these choices and those mentioned above are provided in the research issue list that follows.

3.1.1.1 Registry interface mechanism research issues
The design and implementation of a common registry interface was guided by the following requirements.

3.1.1.2 Provide a standard interface that accommodates expansion

While the original direct interface to the core registry is flexible enough to accommodate new attributes and functions, each addition results in a significant change to that interface, with a possible negative effect on existing applications and other registries using the same original core distribution. Additionally that interface is directly linked into the main submission module and is therefore not particularly easy to alter or extend without a deep understanding of the ADL-R internals. An approach was needed to enable more flexibility and maintain a stable core while still allowing multiple interfaces to coexist.

3.1.1.3 Provide a means for communities to customize registry instantiations and still use the core registry infrastructure

Different communities of practice will need to customize their interactions with their own registry versions. Rather than force multiple instantiations of the registry and possible branching, an infrastructure was needed that would provide a highly customizable interaction environment for different community needs.

3.1.1.4 Differentiate between core registry functionality and the RIM-Lite functionality

Once we started to provide interaction functionality outside of the core registry it became vital to clearly define the task and functionality division to guarantee a clear development path for the new interface. This division must also allow for the maximum flexibility while maintaining data integrity and interoperability.

3.1.1.5 Provide common services to third party applications

Multiple applications would be well served by a set of common functions provided by the registry, e.g., large search result buffering, that they can build upon. A mechanism was needed to allow those services to coexist with the existing standard behavior of the registry.

3.1.1.6 Provide a common mechanism for managing registry administrative information
Registry administration tools, such as those needed to create new user accounts, are dependent on information that was, prior to the RIM effort, kept outside the registry in ad-hoc and independent databases and lists of various kinds. This information was not centralized or coordinated in any way with registry operations. An approach was required to organize this information and connect it more closely with normal registry operations.

3.1.1.7 Provide a flexible and extensible user authentication mechanism

The initial user authentication for ADL-R was built to meet the requirements of the initial hosting site, which required LDAP authentication. This was integrated with the internal registry group permissions based on the Handle System, which is integral to the registry access control and metadata management system. Any movement from LDAP, either by ADL-R or any of the anticipated variations of ADL-R for other communities of practice, would require a new authentication system implementation. An approach was needed to allow multiple authentication systems to be easily integrated with the standard registry distribution.

3.1.1.8 Optimize the interaction of existing tools and technologies with the common registry interface

Given the existence of many tools and techniques in the research and development community designed to automate and extend content repository communications and interactions, the common interface design should be optimized to accommodate the most representative of these technologies and allow future technologies to be seamlessly integrated.

3.1.1.9 Clearly separate the RIM from the portal

The first generation of the registry was built to support a single portal that was responsible for all interactions with the registry. This portal was primarily oriented to end users and much less friendly to application developers. The development of a more flexible registry interface mechanism was an opportunity to clearly define the functionality of the portal in relation to the more general RIM and also more easily enable the creation of multiple portals into a single Registry instance.

3.1.1.10 Protect the registry against denial of service attacks

The design of an extensible and general purpose Registry Interface Mechanism provided an opportunity to protect the registry from some types of denial of service attacks, and so improve its network availability, by adding profiling functionality for identified applications. There are many approaches to providing application identification and thus regulate their interactions with a network service such as ADL-R. The research challenge was to find the best fit with the ADL Registry.

3.1.2 Registry interface research outcomes
Our primary conclusions from this research are as follows:
3.1.2.1 A modular extensible interface mechanism that is itself a framework for additional interface technologies

The RIM architecture is really a framework for execution of the set of operations depicted in Figure 1. The precise way in which these modules are implemented is not as important as the APIs defined around the operations shown in the Figure.
[image: image1.emf]Antivirus

Repository

Registry interface

mechanism

User Interface

mechanism

Operation

Coordination

Mechanism

Caching and processing

module

Presentation and

transformation

module

Business logic

validation

Session authentication

and user Coordination

Registry Interface

Coordination

UserUser

User

ADL-R Interface

mechanism

[image: image9.png]
These operations and the associated data flow are listed below:

· Accept client input.
· Metrics collection after each major set of operations.
· Pre-processing transaction data to enforce business rules and adapt or modify data to be ingested as needed.
· Communicate with the core registry; this is a direct use of the original registry interface.

· Perform core registry operations and direct output to the post-processing module.
· Post-processing module configures the results of the core registry operations as needed to accommodate user requests.
· Output results to client.

An initial implementation design was generated to guide software development for RIM-Lite. This design, shown in Figure 2, is explained below.
[image: image11.jpg]
Figure 2: RIM-Lite Design
3.1.2.2 RIM-Lite modules enforce business logic before and after client interaction

RIM-Lite has a built-in business rules validator based on Schematron technology. This allows RIM-Lite deployments to be easily configured with multiple sets of community-based validation rules to be enforced before data is submitted to the core registry. There, post-processing is also available and is described later in this report.

3.1.2.3 Core registry focused on metadata management

The core registry can now be dedicated to the optimum performance of a limited set of functions. The addition of a common set of interface functions allows the core registry to behave as a very specialized tool for the abstract representation and indexing of any type of metadata. RIM-Lite provides the flexibility needed to configure various registry deployments for different communities and different purposes. This arrangement allows for a core registry engine distribution to be shared amongst a much wider array of implementations, with the common framework for customization provided by RIM-Lite. This should increase the use and so the robustness of the core distribution while also encouraging a wider spectrum of uses.

3.1.2.4 Enabling clients to request, develop, and deploy a series of methods to be applied to an agreed upon set of types

RIM-Lite allows data types to be registered, using globally unique identifiers, and mapped to formulas that relate each type as the input or output of one or more methods. These methods are intended to be certified at a community level and are contributed by community members. We have named this technology the Type Method Mapping Mechanism (TM3). The associated methods will either be applied automatically to a given registry output to alter that output and so deliver a specific type different than the default output, or they can be explicitly called through direct invocation from the user. The current RIM-Lite API provides the necessary mechanisms to implement these data transformations. This provides the CORDRA community as a whole the ability to build a common set of methods to be applied and cross referenced in the future.

3.1.2.5 A relational database internal to RIM-Lite to manage user and repository data

A complete relational database internal to RIM-Lite stores and relates all user and repository data so that that data is accessible to, and can be used by, various administrative tools. Since the database is treated as a common resource, subsets of the data contained therein can be exposed through RIM-Lite. This is applied to user data as well as data for content repositories represented in the registry.

Figure 3 shows the currently deployed database design.
[image: image2.png]
Figure 3: RIM-Lite DB design
3.1.2.6 Full handle-based secret key authentication plus an option for friendly user names

As part of the new interface development effort, the registry was moved to use the standard handle protocol secret key authentication. This allows for encrypted passwords to be kept and enforced at the handle level. Additionally, the system now emulates modern operating system functionality by allowing a mapping between friendly names and persistent user IDs, which would be managed by RIM-Lite. This guarantees, for instance, that the authentication mechanisms could be changed without affecting the username and vice versa. The friendly names functionality is incorporated into RIM-Lite design but has not yet been deployed.
3.1.2.7 A common communication API that allows for multiple service and communication modules

As depicted in Figure 4, the interface module shown in Figure 2 allows for multiple interface modules to be deployed. A standard HTTP module is being deployed along with an administrative interface developed for a User Registration Tool (URT) that is currently in development. A third notable instance of RIM-Lite use is the development of a web services interface by an independent contractor for one of their clients. The RIM-Lite design allows a multitude of interfaces to coexist as long as they use the common RIM interface API.
[image: image3.png]
Figure 4: RIM-Lite Implementation
3.1.2.8 All interaction with the registry, including the default ADL-R portal, is now through the RIM-Lite

The default ADL-R portal is a web based client platform for the registry focused on end users, while applications and systems integrators can rely on the RIM-Lite to provide them with necessary services. This clear separation allows the portal to progress and include better user interfaces oriented directly to end users. In addition, RIM-Lite eases the creation of new portals focused on specific user communities and specific functions, e.g., rating services.

3.1.2.9 Application profiling is enabled by a Client Access Key (CAK)

The use of CAKs is quite common in the industry, e.g.,
· Google - Google API Key

· Yahoo - Yahoo Application ID

· MSN - AppID

· CNRI - CAK

Every client engaging with RIM-Lite in any way will be assigned a CAK. This set of clients will include the default portal, any other portal, any repository-based deposit processes which go directly through RIM instead of the portal, any harvesting process that builds federated registries, etc. That set does not include the clients of those clients, e.g., end user web browsers interacting with a portal.
CNRI CAKs are implemented as handles. Presently, a CAK handle record has "Email, IP Address, Description of Repository and, of course, handle administrator. Additional data could be added in the future, e.g.,
(1) restrictions/Privileges on certain types of interactions
(2) maximum number of interactions in a single day

(3) public/private or secret key for encrypted interaction and authentication

(4) client profile to customize results for clients

Relating CAK and IP address allows RIM-Lite to control the number of connections opened with a particular CAK and so identify intentional or unintentional Denial of Service (DoS) attacks.

3.1.3 Registry Interface Mechanism implementation

The RIM-Lite implementation is based on the following components:
· a J2EE implementation deployed on a JBoss Application server

· a mysql database that provides the persistent data storage

· a set of Java validation modules

· server based McAfee antivirus software

· a TM3 processing module

· a Schematron-based business rules validator

The implementation was successfully deployed and tested during the past year and is currently the main interaction mechanism for the Practice Registry. The operational registry is currently scheduled to be migrated to RIM-Lite interaction by October 1st. RIM-Lite will be folded in to the standard ADL-R distribution.
More details about and additional resources related to RIM-Lite, are now and will continue to be located at the ADL-R portion of the ADL community web site at: http://adlcommunity.net/.

3.2 Registry of Registries

The Registry of Registries (RofR) work was especially challenging due to the fact that the research and design considerations not only had to look at the ADL-R and likely ADL-R clones, but also future registries in the spirit of the overall CORDRA infrastructure. The CORDRA model calls for federating content through metadata registration, and further federating among communities of repositories by federating registries into Registries of Registries. Among the high-level considerations associated with the federation of multiple registries are the issues:

· what data should be gathered, and how should it be gathered and stored

· how to index the data

· how to make the system scalable, flexible and secure

We decided to begin this effort by taking the current ADL-R data model and investigating its applicability to the aggregation of multiple registry instances. This approach helped us specify the CORDRA model and develop a Registry of Registries design along some common guidelines.
The CORDRA federation model that we postulate is based on the existence of Community and CORDRA layers of content object metadata aggregation that share a common Digital Object Representation Model (DORM). Data in these layers is obtained by aggregation mechanisms such as publishing and harvesting, but services offered by the federation are not limited to this data set. In fact, services offered by the CORDRA layer could either operate over aggregated data sets or perform delegated operations through distributed query propagation. The homogenization agents of the architecture are provided by the DORM, and the persistent identification of all data elements in the architecture through the use of handles. The DORM representation model is currently in place in the registry and the deployment platform for the aggregation and distributed query agents is provided by RIM-Lite, which was fitted with new interface modules designed to enable RofR operations.
3.2.1 Registry of Registries research considerations

A number of issues had to be addressed during the research and design of the RofR. Specifically, we focused our research in the following areas:

3.2.1.1 Content object aggregation and representation

A key issue was how to aggregate abstract representations of heterogeneous objects that could themselves have heterogeneous metadata expressed about them in different registries. The aggregation and representation model in the case of an RofR should maintain the same object identity and still allow for metadata diversity and coexistence.

3.2.1.2 Community specific registry interaction with CORDRA registries

Even though the basic registry technology was always intended to be applied to the design of the RofR, the services offered by the different registry types need to be explicitly defined. For example, ADL-R is a community specific registry but ADL will also maintain an RofR that would integrate multiple communities that could be very similar to each other, or very different.

3.2.1.3 Identifiers for CORE entities and their use in federation

All registries of this design associate persistent identifiers with each Content Object Representation Entity (CORE), as well as with each Content Object Metadata Instance. How, then, should the RofR CORE and COMI IDs relate to those of their respective lower level metadata instances?

3.2.1.4 Definition of Content Object Metadata Instance (COMI)

Is a COMI a registry level entity (meaning its scope is tied to the registry in which it is registered) or a service level entity (meaning its scope is within the CORDRA infrastructure and therefore different customizations are possible by different registries including registry of registries)?
Examples with implications of denoting COMI as a service level entity are:
· Example 1 (Repurposing of COMI): An Army RofR might have some Army customizations done on the COMI (note: but not on the associated Content Object) when disseminating information from its RofR, as differentiated from a Navy customization done within a Navy RofR. Customizations could result in different interpretations of a statement for the same metadata element.
· Example 2 (Reuse of COMI): A given CO (CO/1) has a single metadata instance registered in a registry (Reg/1). The COMI is identified by CO/1/COMI/1. Now, the COMI is cross-walked into the RofR (RofR/1) as a result of federation. If the COMI is a registry level entity, then the COMI as it exists in RofR will be identified differently, e.g., CO/1/RofR/1/COMI/1. As a result, there would need to be additional infrastructural support to tie CO/1/COMI/1 and CO/1/RofR/1/COMI/1, without which a user request may not be translated easily across the federation levels. On the other hand, if the COMI is a service level entity, then the same identifier persists, regardless of how the same instance is stored in different registries.
· Example 3: If a given registry (R) is a federation of COs, from multiple repositories, then RofR is a federation of COMIs: A COMI at federation level 0 is a CO for federation level 1, and so on. Therefore, as we move up the federation hierarchy (if any), an infrastructural support is needed to capture the end image of a COMI.
The above examples yield three different implications:
(1) A COMI is a service level entity, therefore, the COMI ID is persistent throughout the federation levels, regardless of how registries at different levels store information. The disseminated information will be specific to the level or registry in which the service is requested.
(2) A COMI is a registry level entity, therefore COMI ID is specific to a registry. The dissemination of a COMI therefore is specific to the level or registry in which the service is requested. This is due to the fact that the COMI is only a registry level entity.
(3) A COMI is in the eye of the beholder – in this case the registry. Therefore, COMI is translated to CO in the next level and this is repeated with additional federation levels.
3.2.1.5 RofR services

 A minimum set of RofR services needs to be defined to enable RofR interaction with applications and users. Obviously, these services must relate to the data stored i or accessed b the RofR.
3.2.1.6 Quality metrics for RofR
A set of RofR metrics must be defined in order to measure and compare different approaches to federation.

3.2.1.7 Federation services

There are many potential issues related to the different approaches to federation that we considered, but we focused on what we feel are the key issues: aggregation and query. While query over aggregated metadata is primarily related to data aggregation, there are significant advantages to distributed query in terms of content independence and performance.
3.2.1.7.1 Aggregated query

In the case of aggregated query, the most important question is the what set of elements to aggregate, and the associated constraints imposed by this selection on the participant registries and the services offered by the RofR. Issues of authentication and metadata translation need to be addressed, as well as the options for staleness control and, possibly, distributed storage of data into trusted peer-to-peer networks that control the aggregation.

3.2.1.7.2 Distributed query

Distributed query posses challenges regarding query scope and asynchronous responses. It is also related to the resulting homogenization of responses and the supported protocols for query expansion and delegation.

3.2.2 Registry of Registries research outcomes

Our primary conclusions from this research are as follows:

3.2.2.1 The Digital Object Representation Model (DORM)
Unlike some object models, the Digital Object Representation Model (DORM) is not directly linked to a particular representation or serialization language such as METS or DIDL, but rather to a common data model. This data mode is based on the assumption that any content object can be represented as a Content Object Representation Entity (CORE).
A CORE groups all metadata instance assertions about a particular object. Each such assertion is called a Content Object Metadata Instance (COMI). The operations at all aggregation levels are primarily executed on these components. The model allows multiple CORE entities related to the same content object, if this object has been registered in multiple communities. Consequently the CORE generated at the CORDRA level is populated with COMIs that encapsulate locally enforced and coordinated metadata about the object.

 A CORE is an encapsulation of the set of COMIs pertaining to a CO (Content Object), as well as additional CORE-specific metadata. The additional metadata is both registry invariant and registry specific. Example of registry invariant metadata is the set of persistent identifiers for the COs. An example of registry specific metadata is indexing data pertaining to those COs.
Thus, CORE = set of COMIs + registry invariant metadata of COs + registry specific metadata of COs.
If you query a federation at a particular aggregation level you will be exposed to a metadata set that is either a complete assertion coordinated at the community level or a subset of the original assertions in several communities at the CORDRA level. While the CORE and COMI are key to every CORDRA operation, this does not imply that every CORDRA query operation must be performed over lower level systems that implement this representation as their internal data model. The CORDRA federation will in fact incorporate and reference any content object on which enough information can be gathered to construct a DORM representation. This includes content objects that are only accessible through an atomic query mechanism rather than a publishing or harvest aggregation mechanism. This minimum information set must include, however, some form of persistent identification of both content objects and metadata instances along with a yet to be defined minimal metadata subset.

3.2.2.2 Community specific registry

The CORDRA approach is based on three guiding principles that enable content object representation aggregation: a common digital object representation model (DORM), a persistent identification system, and a metadata registration, aggregation and query model. These principles allow the architecture to preserve two conceptual aggregation levels for the federation beyond the traditional repository level:

· Community level, related to the particular community that supports, maintains and exposes a CORDRA registry. This level allows for internal flexibility at the level of services and applications through the use of a modular heterogeneous rule enforcement environment, i.e., RIM-Lite.

· Federation or CORDRA level, the common space used to expose, aggregate and resolve content objects. This level obeys and operates in the context of the three guiding principles mentioned previously and is implemented across a peer federation used to provide the services expected by multiple data consumers.
While the CORDRA and Community levels always operate at the content object level in terms of their data propagation, aggregation and representation, the associated data present at each level is quite different. This dichotomy enables the architecture to maintain service and application independence while providing a common representation model.

3.2.2.3 Identifiers for CORE entities

A crucial characteristic of the CORDRA architecture is that all architecture components are tagged with persistent identifiers. This translates into every CO, CORE, and COMI identified by a handle. These identifiers are propagated along the different layers and are also provided to end users as the final pointer to a particular content object. The use of the Handle System allows the identifier generation and resolution to be performed as a secure distributed task using a proven persistent identification mechanism. There exists a direct association between the Content Object Persistent Identifier (CO-PI), the CORE-PI and the COMI-PI by which the original CO-PI may always be obtained from a particular CORE-PI and COMI-PI.
All references to schemas, services and even resources in the system are also expressed in terms of handles. This level of resource identification abstraction allows any CORDRA implementation to operate as a logical structure independent of the particular implementation used to deploy specific repositories, registries, RofRs, or any other services. The fact that the CORE identifier is always a direct computation of the original CO-PI allows us to generate new core identifiers for the RofR CORE objects and still maintain referential integrity across the federation.

3.2.2.4 Definition of Content Object Metadata Instance (COMI)

Since a COMI, as described by the community user, is given a COMI-PI, and its representations in different registries is immaterial to the community user as long as the information is retrieved in a valid fashion, it is best treated as service level entity. Therefore, COMI-PI is persistent throughout the federation levels. This translates into the COMI-PIs being propagated to the RofR and being offered to the users as a result for their queries. This allows advanced tools to track provenance and provide advanced services in the future. This also translates to the RofR CORE entities, recognizing those as service and federation level identifiers. It does not mean, however, that the complete contents are replicated and therefore the main resolution for the COMI-PIs will remain the province of the respective registry that minted them rather than that of the RofR. This is a major difference between an RofR instance of the registry and a Community Level version of the registry.
3.2.2.5 RofR services
The planned RofR services are:
(1) Registration of CORE. This service allows the registration of COREs from the participating registries, aka the federates. Implementation strategies define the approaches used to cross-walk, i.e., translate, the COREs from the federate-based meta-model to the RofR-based meta-model. Note that the CORE translation also includes the indexing data set, which is an important piece of the new CORE definition.

(2) Export of CORE. This service exports the CORE in order to allow the possible federation at the next level. Once again, the implementation strategies define whether or not the CORE is translated before the export.

(3) Discovery/Resolution of Content Objects. This service allows the discovery and resolution of the content objects based on the query requested by the RofR clients, including both human and machine clients. Implementation strategies must address details such as aggregated query and distributed query.
(4) Discovery/Resolution of Registries (Federates). This service allows the discovery and resolution of the participating registries themselves. This will allow clients to follow the chain from RofR to the community-specific registry, in order to register the content objects at the lowest level. Implementation strategies will need to recognize the common meta-model to capture the descriptions and service level details of the federate.

(5) COMI update exposure. This is related to the update of community level registry (CLR) activity to the RofR and the way that the RofR captures this information. The CLRs shall use either a pull mechanism such as the Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH), or a push variant such as Atom feeds. The latter alternative is the one that we have implemented in our prototype.

(6) Aggregated indexing and querying. Once data is aggregated either through push or pull mechanisms, the data is indexed and exposed through a central index that operates over a common subset of metadata.
(7) Distributed indexing and querying. Since the RofR is aware of all the CLRs it federates, it can safely direct distributed queries to them based on additional grouping information such as shared metadata, and can then create even more expressive queries across non-centralized data.

3.2.2.6 Quality metrics for RofR
Specific metrics are used to evaluate the quality of a given federation effort as compared to other designs. We have selected the following metrics, derived from the discipline of Information Retrieval (IR), with definitions and implementations slightly tuned to fit the context of registry federation.

· Total Relevant Records. Total relevant records are all the records retrieved from the federates (registries) if individually queried using the same logical query as requested at RofR at any level.
· Retrieved Records. The retrieved records are the records as retrieved by the RofR when a search service is requested.
Metrics:

1. Precision. Precision is the ratio of the number of relevant records retrieved to the total number of irrelevant and relevant records retrieved.
2. Recall. Recall is the ratio of the number of relevant records retrieved to the total number of relevant records.
A precision of 1 implies no irrelevant record is retrieved. A recall of 1 implies all relevant records are retrieved.
We are striving for precision level of 1 in the case of aggregated data queries based on the minimum common set of metadata and a 0.9 level for the Distributed query due to the expected data set availability issues.

3.2.2.7 Federation aggregation and query models

The metadata about different content objects is registered at each community level registry as a function of metadata aggregation either on a publish or a push method or as a harvesting function of a particular community registry. Each community defines its particular metadata schema and business logic and only a subset of this metadata is percolated to the upper federation layer. The CORDRA model allows for several iterations of this percolation so the concept of a RofR, as well as a “registry of registries of registries” is quite feasible. The basic principle guiding these cascading registrations is that of metadata subsets based on the starting metadata set, i.e., repository level metadata to community registry level metadata and then registry level metadata to registry of registries metadata. The only aggregation requirement is that the CO-ID and COMI-PI is always percolated along with a description field; all additional fields are used to form a new COMI in the upper layer.

While the CORDRA model calls for the existence of RofRs, the aggregation model is just one facet of the CORDRA architecture. The architecture also allows for queries to the system to be propagated into other federations and platforms as long as they communicate using a standard query propagation model and are able to return persistent identifiers to the objects that they identify. The components of the query and of the results are structured according to a CORDRA semantic indexing and interoperability model currently under development.
As part of the registry and RIM-Lite interface modules, we have built both an OAI-PMH based pull aggregation mechanism, and an ATOM Feeds based push aggregation mechanism. Figures 5 and 6 show the RofR aggregation feed first in summary, and then with the accompanying detail.
[image: image4.png]
Figure 5: RofR Summary Atom Feed

[image: image5.png]
Figure 6: RofR detailed Atom feed

We also provide a human readable version of the feed as Figure 7.
[image: image6.png]
Figure 7: User Summary Atom feed
A feed reader can automatically interpret the above into the contents shown in Figure 8.

[image: image7.png]
Figure 8: User summary Atom feed rendering
The RofR version of the feed can be used by a registry to automatically update the specific metadata instance referenced.
3.2.2.7.1 Aggregated query

The aggregated query mechanism implies that once metadata is obtained from the CLRs, only the CORDRA level metadata that is agreed upon is fully indexed and the rest of the metadata submission is stored as full text and indexed as such. In this way, the homogenization task falls to the CLRs in that they agree to expose an agreed upon minimum common set of metadata, e.g., at least CO ID, COMI PI, title, description, etc., to an RofR that aggregates that data along with any other metadata that the CLR is willing to contribute. This later metadata is not field indexed but only full text indexed. The corresponding queries in the RofR are therefore related to either fielded searches or un-fielded searches, just as in the normal registry engine.

3.2.2.7.2 Distributed query

It is expected that certain CLRs will be unwilling to contribute any metadata but that some of those will share common index structures and allow themselves to be queried simultaneously. It is also quite possible that certain queries could be translated into multiple query strings to be executed in parallel. The RofR accommodates all these scenarios through the use of a distributed search platform that is based on a pre query processing module, a peer-to-peer query mechanism, and a post query assembly mechanism. This feature allows the RofR to pass along credentials during query and also adapt query strings and responses to suit particular user needs. These modules, which are a variation of the RIM-Lite modules used for submission, show the real potential of RIM-Lite in the customization of a generic registry. Figure 9 showcases the proposed distributed query workflow.

[image: image10.jpg]
Figure 9: Distributed Query Flow
3.2.3 Registry of Registries prototype
Internal to CNRI, we succeeded in setting up and running a prototype of RofR. While it does function as described below, it is not yet ready to be exposed. It will be demonstrated later this year, although not as part of this contract. Here we describe the issues we addressed and our conclusions.

3.2.3.1 Metadata aggregation at the RofR
Metadata aggregation focuses on two primary issues: (1) Taxonomical grouping of metadata from registries belonging to heterogeneous communities and (2) a well-defined communication protocol to encompass interaction between registries and RofRs.
3.2.3.2 Taxonomical grouping
Heterogeneous meta-models from various communities cannot be mapped into a single taxonomy based model. These heterogeneous metadata items must be clustered into appropriate entities by grouping them into related envelopes. The cluster of related metadata, identified by a common taxonomy, resulting in a semantic envelope, is usable by diverse communities. The advantage of the envelope approach is evident during searches in which a particular category is targeted. In distributed searches, when a query related to a specific semantic category is requested, RofR targets only identified registries as opposed to an exhaustive list of registries, yielding high precision and recall. It is to be noted that a single metadata item in the RofR prototype may be part of zero, one, or many semantic envelopes. An illustration of a taxonomical grouping is given below in Figure 10.

[image: image8.png] Figure 10: Taxonomical Grouping
In the above example, COMI entities corresponding to a content object are grouped into CORE entities in the RofR. COMI 2 from CORE 1 and CORE 2 describe content objects and attribute them to US Navy. On the other hand, COMI 3 from Core 1 and CORE 2 describe content objects and attribute them to US Army. Appropriately, these COMI entities are clustered into corresponding semantic envelopes.

3.2.3.3 Communication protocol
There are many factors involved in a CLR to RofR interaction including: (1) supporting effective metadata refresh policies (2) uniquely identifying metadata and other entities (3) making push/pull techniques transparent to the system (4) providing support to retrieve metadata from a given semantic group and, most importantly, (5) supporting heterogeneous meta-models.
OAI-PMH is a well-defined and implemented protocol that allows harvesting of metadata from an OAI repository. Although OAI-PMH supports selective harvesting, it is restricted to timestamps and sets. Also, it is a simplex dissemination model, wherein metadata items may only be harvested as opposed to being pushed into the interested repositories. The Atom Publishing Protocol, along with its Atom Syndication Format, popularly known as the Atom Syndication Feed, is an IETF proposed standard. It has various features relevant to the CLR to RofR interaction requirements described above. The Atom Publishing Protocol supports push and pull techniques, integrates heterogeneous metadata into its schema, and supports different configurations for querying and retrieving items.
The RofR prototype implemented by CNRI uses the Atom Publishing Protocol and Atom Syndication Format to disseminate metadata from the constituent registries. The dissemination is in the form of syndication feeds, available in two forms, one for the RofR and the other for end users.
4 Overall Outcomes

Our work on Phase 1 of this contract has had a significant impact at several levels in the ADL Registry ecosystem and the CORDRA community at large. It has not only produced a new interaction mechanism for the registry that is now used by all users and developers, but it has also generated a working prototype of the CORDRA federation. The project has succeeded in making the registry friendlier and more flexible to developers and system integrators and has advanced the ideas laid out during the original design to formulate a Registry of Registries strategy. Even beyond the organizations that are directly impacted by the research during this year, the final outcome of this work has ended up affecting and hopefully improving the experience for all registry users and providing a significant advance for the CORDRA community in general.
This report concludes with a summary of the major outcomes in the respective areas that this project has touched.

4.1 ADL Registry architecture and ecosystem evolution

This contract has extended the functionality of the registry to more seamlessly incorporate third party applications. In the process it has reshaped the ADL Registry architecture and ecosystem. The new architecture is more modular and has introduced the concept of a core registry engine that has a highly customizable interaction interface. These two components operate seamlessly together and now work as a symbiotic unit. All interactions now take place through the RIM-Lite and its basic framework design has allowed this component to provide federation and community level services based on the same platform. Rather than building a new component for the RofR we have evolved the registry and RIM-Lite to produce a very flexible federation tool that can work either at a community specific or a global level.

4.2 Research community impact

The work on both RIM-Lite and RofR has resulted in a significant contribution to the CORDRA community. A significant number of features and improvements have been introduced in the system that will provide other researchers with new tools to interact and work with the registry.
We intend to make the research results available to the broader research community through publications and public dissemination in order to foster collaboration and improvement on the concepts discussed in this report. The results of this project now constitute the basis of future discussion and collaboration within the CORDRA effort.

4.3 Development community impact

Probably the most significant impact has been in the ADL-R development community. We have provided them with one of the most customizable and flexible interaction mechanisms of which we are aware. The outcomes and final products of this work will not only offer greatly improved capabilities to registry application developers, but have also allowed the transition to a more flexible platform that can be re-deployed and customized while still maintaining CORDRA interoperability. The incorporation of reusable code and common aggregation ad hoc query platforms should encourage collaboration and foster community driven development. All the design decisions made during this project have been taken with developers in mind and we believe, based on early response, that there is significant potential for both community level and federation level registries once the community embraces the technology and concepts developed over the course of the project.

4.4 User community impact

While our work has always been at the infrastructure level, as opposed to the user interface level, the set of tools that has resulted from this project is already starting to affect the user community by:

· Providing a larger federated data set

· Providing a common set of features to be used by portals and end user applications alike

· Recognizing and endorsing access diversity

· Providing the means to deliver user driven behaviors and customization without affecting the core functionality of the system
We believe that most of the infrastructure has now been developed and put in place to allow the next generation of ADL-R applications to be developed.
Figure � SEQ Figure * ARABIC �1�: Flow within the RIM-Lite framework

Pre query

Query

POST query

RIM

RofR

1

