Learner Assessment Data Model and

Authoring Tools for Tactical Combat Casualty Care (TC3)

Prime Contract Number N61339-06-C-0091

CDRL A007
SOFTWARE USER’S MANUAL

CDRL A008

FINAL REPORT PHASE I

Prepared for:

US Army

Joint ADL-Co-Lab

Attn: Don Philpitt

13501 Ingenuity Drive, Suite 248

Orlando, Fl 32826
Prepared By:

Larry Kayne

Engineering & Computer Simulations Inc.
3501 Quadrangle Blvd., Suite 260

Orlando, Fl 32817
(407) 823-9991 x 303

larrykayne@ecsorl.com
Security Classification: UNCLASSIFIED

Document Control Information

	Revision
	Revision History
	Date

	Ver. 0.1
	Initial Draft
	Oct. 5th, 2007

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Table 1 Document Control Information

Table of Contents

51
Introduction

52
Scope

53
Project Goals – Brief Overview

63.1
Pre-existing Assessment Mechanisms

73.2
The LADMAT Approach

83.3
Functional Goals

83.4
Design Goals

104
System Architecture

114.1
Architecture Overview

124.2
Component Descriptions

124.2.1
BaseTypes Library

124.2.2
Assessment Modeling Tool

134.2.3
Event Data Schema XML File

164.2.4
Assessment Model XML File

214.2.5
Assessment Model

224.2.6
Event Data Schema

224.2.7
Assessment Rules

224.2.8
Simulation Assessment Component

224.2.9
Message Translator (Simulation)

234.2.10
Data Store

234.2.11
Assessment Application

234.2.12
Assessment Engine Component

244.2.13
Message Translator (Assessment Engine)

244.2.14
Results Processor

244.2.15
Training Management System

244.2.16
Assessment Results Component

255
Demonstration Prototypes

255.1
Distribution DVD

265.2
Using the Tools and Demonstration Prototypes

265.2.1
Assessment Modeling Tool

265.2.2
Assessment Engine Web Page

275.2.3
Tactical Combat Casualty Care (TC3) Demonstration Prototype

285.2.4
OneTESS Mobile Medic Application (MMA)

296
Requirements and Results Review

296.1
Results Relative to Project Goals

306.2
Changes From Initial Requirements and Design

316.3
Next Steps (Phase II)

1 Introduction

Starting in July 2006, work began on Phase I of the Learner Assessment Data Models and Authoring Tools (LADMAT) project. This project was developed by Engineering and Computer Simulations, Inc. of Orlando, FL for the Joint Advanced Distributed Learning Co-Laboratory, also located in Orlando. The overall aim of the project was to create a set of data models, software components, and authoring tools for developing and implementing reusable learner assessment models within dynamic training environments (such as simulations). This document represents the final report on this Phase I development effort, which ended in August 2007. Subsequent to the start of development on Phase I, the ADL Co-Lab granted their approval for continued development on the LADMAT project into 2008 (referred to as Phase II). Work on Phase II began in September 2007, and while this development effort is not officially part of this final report, Phase II will be referred to often within this document, as knowledge of Phase II’s approval has in certain instances affected the course of development during Phase I.

2 Scope

This document will present a brief overview of the functional and design goals for Phase I of the LADMAT project (a more detailed description can be found in the System Requirements Document and the System Design Document). Following this overview, the overall system architecture will be described, along with an explanation of the purpose and usage of each of the data models, system components, and authoring tools that make up this architecture. Two prototype applications (simulations) were developed to demonstrate how the features of the LADMAT project components are intended to be used. This document will describe these demonstration prototypes, and provide a brief tutorial on how to install and use them. Finally, this report will provide a section which reviews the initial requirements and system design as defined in the System Requirements Document and System Design Document, which were written earlier in the development process. These requirements and designs will be compared with the current designs and existing components to highlight which functionalities are provided as initially designed, which are provided in a modified form, and which are not currently provided (either deemed not necessary, not relevant, or re-prioritized for Phase II development).

3 Project Goals – Brief Overview

The main goal of the Learner Assessment Data Model and Authoring Tools (LADMAT) project was to provide a generic, adaptable, and standardized mechanism for learner assessment across a range of training/simulation systems. In the context of this project, we are generally referring to ‘training simulations’ as PC or PDA game-based training simulations; however the data models and software components described herein will, by design, allow for other types of simulations (such as dedicated hardware-based simulators or live training) to interact with the assessment system as well.

The term “learner assessment”, in the context of this project, refers to the ability of a system to track a learner’s progress through a training simulation and generate a set of performance metrics. These metrics (i.e. scores, grades), can then be read in by other systems (i.e. an LMS or AAR system) to determine if the learner has satisfactorily met the learning objectives defined for the simulation. Furthermore, these metrics can then be used by other systems to provide structured feedback and/or appropriate remediation to the learner.

3.1 Pre-existing Assessment Mechanisms

Assessment mechanisms that existed pre-LADMAT were generally customized for one specific training application; the assessment logic was either tightly woven into the application (simulation) code or Web page script (see Figure 1):

[image: image1.png]Results Evidence

Figure 1
In either case, however, the assessment logic is tied to a specific simulation and cannot be easily duplicated or modified. If a change to this logic was desired, a computer programmer would be needed to change the code. However the biggest problem is the lack of standardization. Because there are no standard definitions or data formats for such common concepts as “evidence”, “assessment logic”, and “results”, these assessment mechanisms end up getting rebuilt in a proprietary way for every application that requires assessment. This duplication of effort greatly increases development times and discourages the development of reusable and extendable assessment models. It also makes it difficult to build suites of tools and utilities that could make it easier for non-programmer types to create and update assessment models.

3.2 The LADMAT Approach

The overarching design goal of the LADMAT project was to alleviate the above problems by logically extracting the assessment mechanism out of the simulation or web page and into its own formal process. In computer programmer-speak, we wanted to created a stand-alone component library (called an Assessment Engine), along with supporting interfaces and data schemas, that could be “plugged-in” to new or pre-existing simulations and training systems. This Assessment Engine would provide standardized formats for describing simulation event data, assessment logic, and assessment results information. Once these interfaces and data formats were formalized, GUI-based authoring tools could be built that would allow instructional designers and training system managers to create and modify assessment models without resorting to writing C++ or ECMAScript code. In addition, because the Assessment Engine uses known data formats and open programming interfaces, application developers could build add-on components and translators that would enable the engine to be used with many different types of simulations and training applications and within many different training system architectures. The following diagram shows how according to the LADMAT design the assessment functionality is logically separated from the simulation and training system (see Figure 2):

[image: image2.png]Evidence

X

Configure & Launch \ Results

Figure 2
3.3 Functional Goals

The following general functional goals were defined for the LADMAT project (note: these general goals are defined for both Phase I and Phase II):

· Assessment Model Generation – The main functional requirement of the project is the ability to create independent “assessment models” that encapsulate the logic necessary to assess learner performance across a range of training scenarios. This logic includes Terminal Learning Objectives (TLO’s), Enabling Learning Objectives (ELO’s), sub-tasks, task relationships, and performance result calculations (i.e. pass/fail, complete/not-complete, scores, etc.). These models should be able to be created and modified by non-programmers using standard tool-sets.

· Simulation Definition – In order for an assessment model to be created separately from the simulation it is assessing, it is necessary to describe the types of information (events and data) that a simulation is capable of providing to the model. Therefore, a goal of the LADMAT project is the creation of a data format (called the Event Data Schema) which can be used to define the objects and events that a given simulation will track; this way, assessment models can be built independently of the simulation and simulation can be modified or “swapped out” without breaking the assessment logic (as long as the new/changed simulation still adheres to the same data schema).

· Real-Time and Post-Processing Capability – Because not all simulations and training systems work the same way, it is important that the Assessment Engine be able to process information both in real-time and after-the-fact. This means that sometimes a simulation will be directly connected to the training system, and that the simulation would broadcast its event data to the Assessment Engine for processing as it happens. Alternatively, a simulation may be running disconnected from the training system; either the simulation may sometimes be run disconnected from the training network, or is run on a totally different machine which is never connected to the network. In this case, the simulation would need to store its event data (into a file or database), and then the Assessment Engine needs to be able to read in this data at a later date and time for processing.

· Results Processing and Translation – Once the Assessment Engine has generated a set of results, these results need to be sent somewhere. In a distributed learning environment, this typically means translating and storing the results in a Learning Management System (LMS) for use in reporting and remediation. A goal of the LADMAT project is to devise components that can take the assessment results from the Assessment Engine and load them into a training system (such as an LMS or AAR system). Since the Assessment Engine will generally collect much more detailed data than can be stored in training systems, these components will need to be able to filter and translate this information into the desired formats (such as SCORM).

3.4 Design Goals

The following general design goals were defined for the LADMAT project (note: these general goals are defined for both Phase I and Phase II):

· Adaptability – It is important that the assessment system by adaptable in several ways. First, it should be able to be used in many different training/simulation scenarios. Secondly, it should be able to model many different types of assessment scenarios, both simple and complicated. Thirdly, it should be able to interoperate with various system architectures (i.e. client/server, standalone) and various development platforms (i.e. C++, Java, .NET).

· Extensibility – The assessment system should allow future extensions in the form of custom assessment logic and templates. Additionally, the system should provide a “plug-in” architecture to allow future development of add-on features, such as data format translators and report generators.

· Usability – The components and tools created for the LADMAT system should be relatively easy to use. They should allow a non-programmer to generate assessment models without having to resort to writing code, and they should make it easy for application and web developers to link their simulations and training systems into the assessment mechanism.

4 System Architecture

The following is a numbered diagram showing an overview of all the system components and their relation to each other (Figure 3):

[image: image3.png]Simulation

‘Simulefion Assessment Camponent

8

Evert Data Schema @ HML File.

N

ssessmert Hodel

1 [2) Assessment Modeling Tosl
D
Sire

faseTyees “‘"’V®<* GreateEit Event Data Schomas)

Post-Processing

CrostoEdt assessmentods)

Assesbment Application | A1
‘assessthert Engine Coy Panem@

Messags Translator

5 hssesmert ol
EvertDat Schend 6 | |
‘assessmert Fules : i
Resuts rocessorq 4]

Deta
Store

RealTime

Post-Processing|

MS/ AAR

‘assessmert Results Companert, @

Training Managemeft Syster
)

Figure 3
4.1 Architecture Overview

The architecture diagrammed in Figure 3 can be loosely divided into 4 sub-systems:

· Simulation Sub-System – This is the simulation itself that is being used by learners for training purposes (#’s 6, 8, 9).

· Assessment Modeling Design Sub-System – This is the design-time system used by simulation developers and/or instructional designers to define the simulation for assessment purposes and to create assessment models (#’s 2-4, 6, 7).

· Assessment Engine Sub-System – This is the run-time application or service that hosts the assessment models, reads in the event data generated by simulation runs, and generates assessment results (#’s 5-7, 11-14). (note: the Assessment Application (#11) is a conceptual container that could take many forms; in practice it could be implemented as a server application, an applet running on a web page, or even be the simulation itself)

· Training Management Sub-System – This is the system that is managing the training experience for the learner; this is typically an LMS, however it could also be an AAR system or any other system that is interested in tracking simulation performance results.

The general flow of interactions between the users and these sub-systems will briefly be described in the following paragraphs (a more detailed explanation of each of the components will be provided in a following section):

The assessment system diagrammed in Figure 3 is meant to be used by three types of users – instructional designers, simulation/application developers, and learners. The process generally starts with a simulation that has been developed (or is planning on being developed). Therefore, the first step in the assessment modeling process is to describe what data values and events that simulation will provide for assessment purposes. The simulation developer and/or the instructional designer will do this via the Assessment Modeling Tool (#2), and the result of this work will be a generated file called an Event Data Schema (#6). The Event Data Schema file, as seen in the diagram, will be used both by the simulation (in order to generate the appropriate event messages) and the assessment engine (in order to validate and process event messages through an assessment model).

Once the Event Data Schema has been created, the simulation developer will need to set up the simulation so that it can use the schema to generate event messages. The exact method for doing this will be up to the developer, but typically the developer will link the Simulation Assessment Component library (#8) into his project, and then ensure that it gets initialized with the Event Data Schema file and at least one Message Translator component (#9). A Message Translator component is a plug-in used to process event messages into a desired format (i.e. a network stream or XML file). The simulation developer will also need to program the simulation to tell the Simulation Assessment Component to send data update and event messages at the appropriate times (i.e. whenever data changes or events occur during the course of the simulation).

After the Event Data Schema has been defined, an instructional designer will build one or more Assessment Models (#5) based on it. The Assessment Models define the learning objectives, tasks, rules, and overall logic used to measure performance. The instructional designer will use the Assessment Modeling Tool (#2) to create these files. The Assessment Model files will be loaded by the Assessment Application (#11) that contains the Assessment Engine Component (#12) at run-time.

At run-time, when a learner launches the simulation, the simulation will load the Event Data Schema file, load a Message Translator, and then use these to generate event data messages. Depending on the type and configuration of the Message Translator, these messages will either get sent over the network to the Assessment Application or stored in a Data Store (#10) as a log file.

The Assessment Application (which at some previous point has loaded an Assessment Model (#5) based on the same Event Data Schema) will read in the event data messages (either from the network in real-time or from the Data Store), and process them through the model in order to generate assessment results. These results will then be filtered and translated by a Results Processor component (#14) and then sent on the training system (i.e. an LMS) (#15) which can use the assessment results for reporting and remediation purposes.

4.2 Component Descriptions

The following is a list describing the purpose each of the numbered components featured on the diagram in Figure 3:

4.2.1 BaseTypes Library
The BaseTypes library (#1) contains the core functionality for most of the assessment system. It is implemented as a code library (i.e. *.dll in C++/.NET , *.jar file in Java), and while it is not meant to be modified by users, it is important to understand that this library needs to be available to other assessment components at run-time, as they derive their functionality from it. The BaseTypes library includes the base classes for Assessment Objects, Assessment Rules, Event Messages, and Translator plug-ins. It also contains the SimulationRoot base class, which is the main interface that both the simulation and assessment engine systems work with. In fact, as of the end of Phase I, the BaseTypes library itself acts as the Simulation Assessment Component (#8) and as the Assessment Engine Component (#12). In Phase II, however, this functionality will be replaced by separate components that act as a wrapper around the BaseTypes library.

In regards to its use, the simulation developer will need to ensure that this library is deployed with and accessible by the simulation code (i.e. present in the working directory or path (C++/.NET) or classpath (Java)). For current Phase I deployment, the simulation and assessment applications will also need to link to this file directly (via header and .lib files that are provided for this purpose).
4.2.2 Assessment Modeling Tool
The Assessment Modeling Tool (#2) is a stand-alone C# application that a simulation developer and/or instructional designer use to create both Event Data Schema files and Assessment Model files. In its current Phase I form, this application (currently named SimpleCompiler) will simply read-in XML files as input and then generate the schema and model files as output. The user-interface of the application is currently minimal, as it is the main focus of Phase II work to create a fully drag-and-drop interface that allows designers to create schemas and models using GUI tools, without having created the XML input files by hand.

The main input to the Assessment Modeling Tool is an XML-based project file. This file defines the project settings, compiler settings, and references to the Event Data Schema XML file and Assessment Model XML file used to define the schema and model.

While the user interface of the Assessment Modeling Tool may currently be minimal, the functionality it provides is quite technologically sophisticated. The tool reads in XML files representing the project settings, event data schema, and the assessment rules/logic and then creates entire class libraries containing customized Assessment Object, Assessment Rule, and supporting classes. All the source code files for these classes are automatically created and stored in a user defined directory (C++ *.h & *.cpp files, Java *.java files). In addition, these source files are compiled into binaries (C++ *.dll, Java *.class and *.jar) and stored in a separate user defined directory. It is these files that represent the Event Data Schema and Assessment Model files used throughout the system.

Note: As of the end of Phase I, the Assessment Modeling Tool compiles the Event Data Schema and Assessment Model classes into a single library, which can be loaded in by both the simulation and the Assessment Engine. It is the intended that in Phase II the Assessment Modeling tool will split its output into multiple libraries; it will create one library specifically for the Event Data Schema and then one library for each Assessment Model based on that schema.

4.2.3 Event Data Schema XML File

The Event Data Schema XML File is used as input by the Assessment Modeling Tool to define the assessment object, event, and enumeration classes that a given simulation will use for broadcasts log data at run-time (evidence). This XML file essentially contains a number of <Class> elements that contain the class definitions used during assessment. As of Phase I, a user will need to create this document by hand using a text editor. However, in Phase II it will be a function of the Assessment Modeling Tool to automatically create this file after a user has built an Event Data Schema using a GUI front-end.

The <EventDataSchema> Element

The <EventDataSchema> element is the root element for the schema XML file. It contains two attributes, name and version. The name attribute provides the name for the EventDataSchema, and the version attribute provides a string representation of a standard Major, Minor, Revision, Build version number (i.e. “1.0” or “3.5.0.6” etc.). Together, the name and version of a schema file uniquely define it to the assessment models that are built from it.

The <Class> Element

The following is an example of a <Class> definition that could be used in a hypothetical “Tic Tac Toe” game; in this case a “Cell” class is defined representing a cell on the Tic Tac Toe game board:

<Class name="Cell" type="Class">

 <Attributes>

 <Attribute name="ObjectId" type="String" />

 <Attribute name="X" type="Integer" />

 <Attribute name="Y" type="Integer" />

 <Attribute name="CellType" type="Enumeration" innerType="CellType" />

 <Attribute name="CellContents" type="Enumeration" innerType="CellContents" />

 <Attribute name="OppositeCell" type="AssessmentObject" innerType="Cell" />

 </Attributes>

</Class>

Each <Class> element will include a name attribute (self-explanatory), and a type attribute; each class can be one of four types – Class, SimulationClass, CustomEventClass, or EnumerationClass defined as follows:

Class Types

· Class – This is the standard class type for assessment objects. Each <Class> element of type Class can contain definitions for attributes and events. A user can define any number of Class-type <Class> elements (including none).

· SimulationClass – This is the required class definition for the class that represents the simulation as a whole, which essentially will act as the root ‘global’ container of data for assessment purposes. The <Class> element of type SimulationClass can contain definitions for attributes and events (similar to type Class). The main difference between Class and SimulationClass types is that there must be one (and only one) element of type SimulationClass defined for each Event Data Schema.

· CustomEventClass – This is the type for classes that represent the definitions of events. Both standard assessment object classes and the simulation root class can be defined as raising events (see below), and each defined event can carry its own set of data values. <Class> elements of type CustomEventClass are therefore used to define the set of data that a given event will carry. CustomEventClass-type classes will only contain attributes, and no events (i.e. an event cannot raise an event).

· EnumerationClass – This is a special class type used to define a named list of items. EnumerationClass types do not contain attributes or events, but rather contain a list of <Value> elements. EnumerationClass type classes are generally referenced by attributes of other classes (see below).

<Attribute> Elements
Note: To avoid confusion, when we use the term ‘Attribute’ (upper-case ‘A’) we are referring to an Attribute of a class defined in the Event Data Schema; when we use the term ‘attribute’ (lower-case ‘a’) we are referring to standard XML attributes.

Each <Class> element (excepting those of type EnumerationClass) will contain an <Attributes> child element which in turn will contain a list of <Attribute> child elements. Each <Attribute> element defines a data field for the class that contains it, and will contain XML attributes for name, type, and possibly innerType. In general, an Attribute can contain either a primitive type (i.e. boolean, integer, float, string), a reference to another assessment object, an enumerated value, or a collection (list) of other assessment objects.

The required name attribute defines what the Attribute will be called within the class it is defining. The attribute type refers to the type of data that will be stored and needs to be set to one of the following values:

· Boolean – a true/false type (C++ bool; Java boolean)

· Integer – an integer value (C++ int; Java int)

· Single – a single-precision floating point value (C++ float; Java float)

· Double – a double-precision floating point value (C++ double; Java double)

· String – a string value (C++ string; Java String)

· AssessmentObject – a reference to another assessment object

· Enumeration – reference to an enumerated list of possible values, as defined by a <Class> of type EnumerationClass defined elsewhere in the schema

· List – reference to a collection of assessment objects

Each <Attribute> element may also have an addition innerType attribute. The innerType attribute is required for Attributes of type AssessmentObject, Enumeration, and List:

· The innerType for an AssessmentObject Attribute will be the name of a Class-type class defined elsewhere in the schema, thereby defining the type of assessment object that is being stored by the Attribute. This allows assessment objects to contain other assessment objects.

· The innerType for an Enumeration Attribute will be the name of an EnumerationClass-type defined elsewhere in the schema. In this case, the innerType attribute is identifying which enumerated list of values the Attribute will be constrained to.

· The innerType for a List Attribute will be the name of a Class-type class defined elsewhere in the schema, thereby defining what type of assessment object will be stored in the list.

NOTE: For Class, SimulationClass and CustomEventClass-type classes, there is a mandatory Attribute, called ObjectId that must be included in each class definition. This Attribute is of type String, and is used internally by the Simulation Assessment Component and the Assessment Models at run-time in order to uniquely identify each assessment object that is created.
<Event> Elements & CustomEventClass Definitions
Classes of type Class and SimulationClass can both define events that instances of those classes can raise at run-time. Events are created and referenced in two places within the Event Data Schema. First, the event itself must be defined as a class, within a <Class> element of type CustomEventClass. Secondly, the event must be referenced by another class in an <Event> element. For example, refer to the following schema elements from the TC3 Combat Medic schema:

<Class name="CheckAirway" type="CustomEventClass">

 <Attributes>

 <Attribute name="ObjectId" type="String" />

 <Attribute name="BodyPart" type="Enumeration" innerType="BodyPart" />

 <Attribute name="AirwayStatus" type="String" />

 </Attributes>

</Class>

<Class name="Medic" type="Class">

 <Attributes>

 <Attribute name="ObjectId" type="String" />

 <Attribute name="MedicName" type="String" />

 </Attributes>

 <Events>

 <Event name="CheckAirway" eventClass="CheckAirway" storeHistory="false" />

 </Events>

</Class>

In this example, we are defining a “Medic” class that can raise “CheckAirway” events. In order to do this we first define the custom event class “CheckAirway” and define the types of data (Attributes) that this event will carry. After the custom event class has been defined, we can then add the event to other classes. In the above example, we can see that there is an <Events> section within the “Medic” class that contains an <Event> element named “CheckAirway”. Within this <Event> element, we can see that the “CheckAirway” event class is referenced by the eventClass attribute. A custom event class only needs to be defined once in the schema, and after that any number of classes can reference it.

The storeHistory attribute of the <Event> element is currently ignored in the Phase I implementation of the assessment system. It is the intention for Phase II implementation that each assessment object will be able store the history of every event that it has raised. This, for example, would allow an assessment rule to ask “What was the difference in AirwayStatus between when the Medic checked the airway the first time vs. the second time”? The storeHistory attribute would therefore be used to turn this event-history-storing capability on or off.

Enumeration Classes

<Class> elements that have a type of EnumerationClass are used to define a bounded list of values that can be used by Attributes of other classes. For example, in the “CheckAirway” custom event class (defined above) we can see that there is an Attribute named “BodyPart” that is of type “Enumeration” and innerType “BodyPart”. In this case, the innerType of “BodyPart” is referring to an enumeration class defined elsewhere in the schema as follows:

<Class name="BodyPart" type="EnumerationClass">

 <Values>

 <Value name="None" />

 <Value name="Head" />

 <Value name="Neck" />

 <Value name="Back" />

 <Value name="Chest" />

 <Value name="Heart" />

 <Value name="Lungs" />

 <Value name="Abs" />

 <Value name="ArmLeft" />

 <Value name="ArmRight" />

 <Value name="WristLeft" />

 <Value name="WristRight" />

 <Value name="LegLeft" />

 <Value name="LegRight" />

 </Values>

</Class>

An enumeration class does not have an <Attributes> section or an <Events> section, but instead contains a <Values> section. Inside the <Values> section is a list of child <Value> elements that each defines one valid enumerated value (via the name attribute). To sum up the entire example, a “Medic” object can raise a “CheckAirway” event, and this event contains information about what part of the body the airway was checked at. The valid possible parts of the body are listed in the “BodyPart” enumeration class.

As a final note, each enumeration class only needs to be defined once in the schema, and can then be referenced any number of times by Attributes of other classes in the schema. Therefore, in our example, an assessment object of type “Patient” could contain an Attribute called “WoundLocation” that also uses the enumerated class “BodyPart”.

4.2.4 Assessment Model XML File

The Assessment Model XML File (#4) is used as input by the Assessment Modeling Tool (#2) to define the rules that make up a given assessment model. The file is made up of a root <AssessmentModel> element containing a list of <Rule> elements that each defines one rule. As of Phase I, a user will need to create this document by hand using a text editor. However, in Phase II it will be a function of the Assessment Modeling Tool to automatically create this file after a user has built an Assessment Model using a GUI front-end.

<AssessmentModel> Element
The <AssessmentModel> element is the root element for the Assessment Model XML File, and it contains three required attributes:

· name – The name attribute is used to specify a unique name for the model.

· version – The version attribute is used to specify the current version of the model using a standard Major, Minor, Revision, Build notation (i.e. “1.5.0.2”).

· schema – The schema attribute is used to identify the name of the Event Data Schema that the assessment model is based on.

· schemaVersion – The schemaVersion attribute is used to identify the version of the Event Data Schema that the assessment model is based on.
Currently, in Phase I, the schema and schemaVersion attributes are not used because each Assessment Model is compiled along with the Event Data Schema it uses into the same library. However in Phase II, each Assessment Model will be compiled into a separate library than its Event Data Schema; at that point the schema and schemaVersion attributes will be used so that a given Assessment Model can validate that it is working with the correct schema at run-time.

<Rule> Elements

In Phase I of the LADMAT project, there are three types of Rules that can be defined – ConditionRule, EventRule, and ParentRule. The most basic types of Rules are ConditionRules and ParentRules, and most other Rule types are essentially just templates built up from combinations of them. The primary function of all rules, regardless of type, is to determine if the Rule is Satisfied or Not Satisfied. In Phase II, it is intended that all Rules will also implement “score” and a “completed/not completed” functionality.

Note: The Assessment System uses the term “Rule” throughout in order to keep things simple. Often in distributed learning systems, the terms “Task” and “Objective” are also used to identify higher-level learning constructs. However, the Assessment System considers Tasks and Objectives to just be forms of Rules, and does not differentiate between these terms. For example, while an instructional designer might say “Did the student complete the ‘engage enemy’ task?” the Assessment System would use the terminology “Is the ‘engage enemy’ rule satisfied?”

Each <Rule> element will contain two required attributes – name and type. The name attribute uniquely identifies the rule within the model. The type attribute specifies the Rule type – ConditionRule, ParentRule, or EventRule.

Condition Rules
Condition Rules, as mentioned above, form the basic building blocks of an assessment model. A Condition Rule, in general terms, simply determines if a given condition evaluates to true. A condition is made up of an attribute, an operator, and a value; for example “Tank.Speed > 55”. In this case, the attribute is the “Speed” attribute of the “Tank” class, the operator is “GreaterThan”, and the value is “55”. By combining these simple Condition Rules into Parent Rules, virtually any assessment logic can be described.

Things are not quite that simple, however. When applying a rule condition, the run-time system needs to know which objects to apply the condition to. The assessment system allows for many objects of a given class to be created; for example, an Event Data Schema may define a single “Tank” class, however a given simulation run may create 10 different “Tank” objects during the course of play. So if one were to define a condition that specified “Tank.Speed > 55”, the question would now become “which Tank?” This is the purpose of the Object Filter.

An Object Filter specifies a separate list of “filter conditions” to filter out which object(s) to apply the Rule Condition to. To continue with the above “Tank” example, we could specify a filter that says “Tank.Driver.ObjectId = Player1” (Player1 being the ID of the person playing the game). Combining this filter condition with the above rule condition would give us a rule that specifies: “If the speed of the Tank that Player1 is driving is greater than 55, then this rule is satisfied.”

Object Filters can contain more that one filter condition (or none). In these cases, only objects that meet all the conditions will be considered for the rule. It may also happen that more than one object may meet the filter condition(s). When more than one object passes the filter, than the rule must specify whether all of the objects must meet the rule condition, or if any one of the objects can meet the rule condition, in order for the rule to be satisfied. To accommodate this, each Condition Rule contains a “MultipleObjectsMatch” attribute which can be set to “MatchAllObjects” or “MatchAnyObjects”. For example, given the following filter conditions and rule condition:

Condition Rule: “BattleTanksUpToSpeed”

Filter Conditions:

1. Tank.Country = “USA”

2. Tank.Type = “M1A1 Abrams”

Rule Condition:

Tank.Speed > 55

In the above Condition Rule, it may be possible that there may be 20 M1A1 tanks that belong to the USA currently active in the simulation. If the “MultipleObjectsMatch” attribute is set to “MatchAllObjects”, then all 20 tanks will need to have a speed value set to 55 or greater in order for the Condition Rule to be satisfied. Alternatively, if the attribute is set to “MatchAnyObjects”, then if any one of the 20 tanks has a speed greater than 55 then the rule will be considered satisfied. (Note: if not specified, the default value for the “MultipleObjectsMatch” attribute is “MatchAllObjects”)
To summarize the functionality of Condition Rules, each Condition Rule will have exactly one rule condition, and zero or more filter conditions. The rule condition specifies the condition that an object must meet in order for the rule to be considered satisfied, while the filter conditions determine which objects will be tested.

In the Assessment Model XML file, this is how a Condition Rule element is defined:

<Rule name="BattleTanksUpToSpeed" type="ConditionRule">

 <ObjectFilters>

 <FilterCondition attributePath="Tank.Country" attributeType="String" value="USA" />

 <FilterCondition attributePath="Tank.Type" attributeType="String" value="M1A1" />

 </ObjectFilters>
 <RuleCondition attributePath="Tank.Speed" attributeType="Integer"

 operator=”GreaterThan” value="55” />
</Rule>

As mentioned above, each <Rule> element will contain a name attribute and a type attribute, which in the case of Condition Rules will be set to the value ConditionRule. Condition Rules will have two child elements – <ObjectFilters> and <RuleCondition>.

The <ObjectFilters> element will contain a list of zero or more <FilterCondition> elements, each of which has an attributePath, attributeType, value, and possibly an operator attribute:

· attributePath – This specifies the attribute for the filter, starting with the class name, a period (“.”), then the name of the attribute. If the attribute is an inner attribute of a contained class, then a full path to the inner attribute can be specified (i.e. “Tank.GunTurret.Diameter”).

· attributeType – This specifies the type of data that the attribute contains (see section 4.5 - <Attribute> Elements for a list of valid attribute types).

· value – This specifies the value that the attribute will be compared against

· operator – This optional attribute specifies how the object attribute will be compared against the give value; the valid options are “Equals”, “GreaterThan”, “GreaterThanEquals”, “LessThan”, “LessThanEquals”. If the operator attribute is not included, than “Equals” is assumed.

The <RuleCondition> element defines the one main rule condition itself, and therefore has not child elements (refer to earlier in this section for an explanation of the difference between Rule Conditions and Filter Conditions). A <RuleCondition> element’s attributes are the same as those for the <FilterCondition> element’s listed above.

Note: Implicit in the design of a Rule Condition is the requirement that the filter conditions be based on the same class type as the rule condition. For example, if you have “Tank” objects filtered based on “Tank.Country = USA”, then having a rule condition of “Plane.Airspeed = 500” does not make sense (i.e. a rule cannot test the Airspeed of Tanks, because a Tank does not have an Airspeed Attribute). Therefore the first part of the attributePath for all <FilterCondition> elements and the single <RuleCondition> element should be the same within the same Rule (i.e. “Tank” in our example).

Parent Rules
While Condition Rules are the building blocks of Assessment Models, Parent Rules are the glue that allows for the creation of more complicated assessment logic. Parent Rules are used to combine two or more other rules of any type together; and since Parent Rules can contain other Parent Rules, they are used to form the Assessment Model hierarchy – from the lowest level rule conditions and minor sub-tasks to more complex tasks and higher level learning objectives.

A Parent Rule contains a list of child rules, along with information about how to combine and assess the child rules in order to determine its (the Parent Rule’s) status. In Phase I, the main functionality of any rule is to determine if it is Satisfied or Not Satisfied. For a Parent Rule, the Satisfied status is determined by evaluating the status of each child rule. If the satisfyType attribute of the Parent Rule (see below) is set to “SatisfyAll”, then each of the child rules will need to be set to Satisfied to make the Parent Rule Satisfied. If the satisfyType attribute is set to “SatisfyAny”, then as soon as any child rule is set to Satisfied, then the Parent Rule becomes Satisfied.

In addition to the satisfyType attribute, each Parent Rule can specify whether or not its child rules have to be satisfied in a specific order. If the ordered attribute is set to true, then each child rule will be need to become Satisfied according to the ruleOrder value assigned to it (see below).

Within the context of the Assessment Model XML file, here is what a Parent Rule looks like:

<Rule name="TankNavigation" type="ParentRule" satisfyType="SatisfyAll" ordered="true">

 <ChildRule name="CheckPointAPassed" ruleOrder="0" />

 <ChildRule name="CheckPointBPassed" ruleOrder="1" />
 <ChildRule name="CheckPointCPassed" ruleOrder="1" />
 <ChildRule name="CheckPointDPassed" ruleOrder="2" />

</Rule>

In the above example, a ParentRule called “TankNavigation” is defined that says the tank that the player is driving must navigate to a number of defined check points (defined as child rules) in a specified order. The satisfyType attribute, set to “SatisfyAll”, specifies that every child rule must be satisfied (i.e. every check point must be passed). If this was set to “SatisfyAny”, then as soon as any one check point was passed, then the Parent Rule would be considered Satisfied. In addition, the ordered attribute was set to true; this means that the check points must be passed in the order specified. If it was set to false, then the check points can be passed in any order.

Each <ChildRule> element contains two attributes – name and ruleOrder. The name attribute must refer to the name of another existing rule defined elsewhere in the Assessment Model. The ruleOrder attribute must contain a positive integer value, and these values determine the order that the child rules must be met (if the Parent Rule’s ordered attribute is set to true; if it is set to false then these attributes are ignored).

Notice in the above example that the middle two child rules both have a ruleOrder set to “1” (this is not a typo!). If any two child rules have the same ruleOrder value, then that means that those two rules can be satisfied in any order relative to each other. The example above is saying that check point A must be passed first, then check points B and C must be passed (in any order), then check point D must be passed.

With just the two basic Assessment Model constructs, ConditionRule and ParentRule, extremely complex assessment logic can be created. Condition Rules form the basic tests, and Parent Rules can be combined in an infinite number of ways to enable switching, branching, and the formation of rule hierarchies. Most other rule types are really just a template built upon these basic types.

Event Rules
Event Rules are a template based upon Condition Rules, and are used to make it easy to define one of the most common assessment tests, that of determining if “something happened”. Events are defined for assessment objects in the Event Data Schema. For example, if a “Tank” class defines a “FiredGun” event, then a rule might be desired to test whether a given tank (or any set of tanks) has fired. While such a rule could be built by strictly using a Condition Rule, an Event Rule makes the definition easier to understand and a little easier to write.

The simplest way to define an Event Rule in the Assessment Model XML file is as follows:

<Rule name="TankFiredRule" type="EventRule">

 <Event sourceClass="Tank" eventName="Fired" />

</Rule>

Every Event Rule contains one child element called <Event>. The <Event> element contains to required attributes – sourceClass and eventName. The sourceClass attribute is used to name the class that the event belongs to, and the eventName attribute is used to identify the event itself.

The above Event Rule definition says that the “TankFiredRule” should be set to Satisfied as soon as a Tank object raises its “Fired” event. Note, however, that the rule as defined above will be set to Satisfied as soon as ANY Tank fires; this is because there are no object filter conditions set, and that means all Tanks are eligible to meet the rule. If there is only ever one Tank in the game, then this is doesn’t matter, and we can use the above “short form” of the rule (this is always the case with events raised by the Simulation class itself, as there is always one and only one Simulation object instantiated). This may also be the desired logic, for instance, in a hypothetical rule that says “Wait for any Tank to fire before starting your charge...”.

However, if there is more than one Tank in the simulation and we are interested in knowing when a specific Tank (or set of Tanks) has fired, then we need to add one or more object filter conditions:

<Rule name="TankFiredRule" type="EventRule">

 <Event sourceClass="Tank" eventName="Fired" />
 <ObjectFilters>

 <FilterCondition attributePath="Fired.Tank.Driver.ObjectId"

 attributeType="String"

 value="Player1" />

 </ObjectFilters>
</Rule>

The <ObjectFilters> and <FilterCondition> elements work the same way as they do for standard Condition Rules (see above). In this example, we are setting a filter condition that says we are only interested in the Tank who’s Driver’s ID = Player1. Only when this Tank fires will the “TankFiredRule” Event Rule be set to Satisfied. Note the funny notation of the attributePath value – “Fired.Tank.Driver.ObjectId”. In order for this to work (as of Phase I), the designer of the “Fired” event will have needed to add the “Tank” Attribute to the custom event object class definition; this is because events by default do not have a reference back to the object that raised them (this will be addressed in Phase II).

A <RuleCondition> element is not required for Event Rules, because it is already set by default to “(event name).Occurrences >= 1”. (Technical Explanation: every custom event object has a built in “Occurrences” Attribute, and every time the event is fired the Occurrences value is incremented, triggering the rule). However, an Event Rule definition can override this default behavior. For example, assuming the “Tank.Fired” custom event object contains a “Direction” Attribute, we could then apply a stricter test to the Event Rule by adding a rule condition:

<Rule name="TankFiredRule" type="EventRule">

 <Event sourceClass="Tank" eventName="Fired" />
 <ObjectFilters>

 <FilterCondition attributePath="Fired.Tank.Driver.ObjectId"

 attributeType="String"

 value="Player1" />

 </ObjectFilters>
 <RuleCondition attributePath="Fired.Direction" attributeType="String"

 operator=”Equals” value="North” />
</Rule>

With the addition of the above rule condition to the event rule, a “Tank” driven by “Player1” will need to have “Fired” in the “Direction” equal to “North” in order for the rule to be Satisfied.

4.2.5 Assessment Model

The Assessment Model (#5) is the file that is generated as output from the Assessment Modeling Tool (#2). It is a compiled code library (*.dll in C++/.NET, *.class/*.jar in Java) and is read in by the Assessment Engine (#12) at run-time. The Assessment Model contains all the rules and logic used to assess performance for a given simulation. The name of this file is the same as the project name that the modeling tool is using, followed by a .dll or .jar extension.

To use this model in an Assessment Application the application will need to reference the BaseTypes library for the platform being used. The BaseTypes library contains a class called AssessmentSchemaManager that implements a static method called LoadSchema(string modelLibName). The application calls this method, passing in the name of the Assessment Model file in order to load in the assessment rules (see the demo applications for working examples).

Every Assessment Model file is based on a specific named/versioned Event Data Schema (see next section). In the Phase I design, this schema is compiled along side of the model into the same output file. As mentioned previously, the intention for Phase II is for the Assessment Modeling Tool to create separate files for the Event Data Schema and Assessment Models.

4.2.6 Event Data Schema

The Event Data Schema (#6) is the file that is generated as output from the Assessment Modeling Tool (#2). It is a compiled code library (*.dll in C++/.NET, *.class/*.jar in Java) and is read in by the Simulation Assessment Component (#8) at run-time. The Event Data Schema contains all of the assessment class definitions (i.e. data and events) defined for a given simulation. The name of this file is the same as the project name that the modeling tool is using, followed by a .dll or .jar extension.

In the Phase I design, the Event Data Schema is compiled along side of the Assessment Model into the same output file. An interesting side-effect of this design is that the simulation itself has access to the assessment results if it chooses to listen to them. If not, however, the results can be ignored inside the simulation and accessed later when the simulations messages are read in by an external Assessment Application. As mentioned previously, the intention for Phase II is for the Assessment Modeling Tool to create separate files for the Event Data Schema and Assessment Models. This will give simulations the ability to just load the Event Data Schema, and not carry along the extra baggage of an assessment model that it doesn’t care about.

4.2.7 Assessment Rules

The Assessment Rules (#7) are the compiled classes that exist inside the Assessment Model library (#5). An detailed explanation of how these rules work was given in section 4.6 above (Assessment Model XML File).

4.2.8 Simulation Assessment Component

The Simulation Assessment Component (#8), is for Phase I a conceptual component that a simulation uses to load in an Event Data Schema and generate valid log messages to send to the Assessment Engine. As of Phase I, the Simulation Assessment Component takes the form of the AssessmentSchemaManager class located in the BaseTypes library. The main method of the AssessmentSchemaManager class is the LoadSchema() method, which loads in a given Event Data Schema library generated by the Assessment Modeling Tool (#2). Once the library is loaded, the simulation code interacts with static methods from the SimulationRoot class (also part of the BaseTypes library) in order to initialize the simulation assessment process and to create and send assessment messages (see the demo applications for working examples).

To add assessment functionality to a simulation, a developer needs to link directly into the BaseTypes library to get access to the needed classes. In Phase II, the intention is to make the Simulation Assessment Component a first-class library of its own, adding features and methods to simplify the integration process for the developer.

4.2.9 Message Translator (Simulation)

The purpose of a Message Translator (#9) component (on the simulation side) is to convert the internal message data generated by the Simulation Assessment Component into a specific format for transfer into an Assessment Application or data store. A Message Translator is any class that inherits from the EventListener class defined in the BaseTypes library. The Message Translator class simply needs to override the ProcessMessage() method of the EventListener class and to register itself with the SimulationRoot class via the SubscribeToEvents() method. What a given Message Translator does with the messages it receives is up to the implementation, but the general idea is for the translator to convert the internal data into some other format and then forward it on to somewhere (i.e. convert to XML and send to a log file, or convert to an encrypted binary format and send to a server, etc.).

As part of the demo applications, a Message Translator library called XmlTranslator was built in C++ in order to process assessment messages into XML and send them to either an XML file or to a network host/socket. (A corresponding Java-based Message Translator was built on the Assessment Engine side to read in this XML data; see section 4.15)

4.2.10 Data Store

A Data Store (#10) refers to some conceptual method of storing simulation and result messages in between the times they get generated, processed, and reported. Generally the Data Store represents a regular file (i.e. an XML file); however a Data Store could also be a database or any other mechanism for persisting information. For the LADMAT project, an example of a data store is the XML file that the XmlTranslator component generates. However any data store format could conceivably be used as long as a Message Translator (#9 & 13) can be built to write to it and read from it.

4.2.11 Assessment Application

The Assessment Application (#11) is the conceptual term used to refer to the process that is being used to host the Assessment Engine Component (#12). In practice, this process may be a stand-alone application, a Java Applet or .ASP component embedded in a web page, a server application or web service, or even the simulation itself. Because the LADMAT project is built in a modular, component-based fashion, it is left up to the implementation of the training system designers to determine how the assessment engine is implemented.

For the demo applications (described later), a Java applet embedded in a web page was used as the Assessment Application. This applet was designed to read in the assessment log messages sent by the simulations from either an XML file or directly from the simulation in real-time over the network. It is expected that this design will represent one of the most common methods of implementation – An LMS will contain a SCO that navigates to a “Simulation” web page that either launches the simulation directly or directs the user to run the simulation manually. Embedded in this web page is an assessment applet that reads in the simulation log messages directly in real-time (if the simulation was launched and can communicate with the web page) or from a log file that was generated by the simulation (if the simulation is not connected or is located on another machine).

4.2.12 Assessment Engine Component

The Assessment Engine Component (#12), like the Simulation Assessment Component (#8), is for Phase I a conceptual component used to load an Assessment Model (#5), process event messages through this model, and generate assessment results. Also like the Simulation Assessment Component, for Phase I the Assessment Engine Component takes the form of the AssessmentSchemaManager class inside the BaseTypes library. In Phase II, it is intended that a separate first-class library will be built to represent the Assessment Engine Component.

The AssessmentSchemaManager uses the LoadSchema() method to load in an Assessment Model file generated by the Assessment Modeler Tool (#2) (which for Phase I is the same file as that used for the Event Data Schema). The Assessment Engine Component then needs to load a specific Message Translator (#13) that can read in the simulation’s event messages from whatever format they are in and translate them into the appropriate SimulationEventInfo objects for processing. The SimulationEventInfo objects created by the translator are processed the same way as they are in the Simulation Assessment Component - by calling static methods on the SimulationRoot class.

The Assessment Engine’s handling of assessment results is also similar to the Simulation Assessment Engine’s handling of simulation log messages. Another Message Translator (called a Results Processor (#14) in the diagram) is built as a class that derives from the BaseTypes.EventListener class. The only difference here is that translator is designed to process rule status messages instead of simulation log messages. It is up to this Results Processor translator to decide what to do with the final results (i.e. store them in a file, update an LMS, etc.)

4.2.13 Message Translator (Assessment Engine)

The Message Translator (#13) shown in the Assessment Engine Component (#12) is essentially the same component as the one in the Simulation Assessment Component (#9) (also see sections 4.11 and 4.14), except that it reverses the translation. In this case, the translator takes a specific format (i.e. XML) and converts it to the internal objects (i.e. SimulationEventInfo objects) used internally by the Assessment Engine code.

It is possible that both Message Translators (#9 & #13 used in the Simulation Assessment Component and Assessment Engine) could be built into the same code library. However, differing platforms, such as a C++-based simulation and a Java-based Assessment Engine, will often dictate that these translators be built separately (such is the case with the project demos describe later).

4.2.14 Results Processor

The Results Processor (#14), as mentioned in section 4.14, is another Message Translator that is built in order to do something with the assessment results generated by the Assessment Engine Component. This “something” may be to store the results in an LMS, forward them on to a database, process them through a web service, etc. The only difference between the Results Processor and the other Message Translators is that the Results Processor is set up to process RuleStatusUpdatedInfoInfo messages (i.e. the rule status messages) instead of the SimulationEventInfo messages (i.e. the simulation event messages).

In the demo applications, the Results Processor takes the form the Java applet itself; the applet implements the BaseTypes.EventListener interface, which processes the rule status messages by writing the results to the web page.

4.2.15 Training Management System

The Training Management System (#15) referred to in the architecture diagram is meant to represent some system or application that uses the assessment results. Often, in the case of distributed learning, this means a Learning Management System (LMS). However, the LADMAT assessment system is agnostic as to how its results are used. It may be that an After-Action-Review system or other reporting system may desire access to student performance information for various reasons.

4.2.16 Assessment Results Component

The Assessment Results Component (#16) is meant to represent any component that may be needed to interpret and process the assessment results for a given Training Management System. For example, an LMS may require a special component to turn the results into the SCORM-formatted messages required by the SCORM ECMAScript API. In most cases, this component could be built directly into the Results Processor (#14). However in certain cases, such as when the results are saved to a file to be retrieved later, a special component will need to be devised to handle a specific need.

5 Demonstration Prototypes

5.1 Distribution DVD

The LADMAT Phase I Distribution DVD contains the following directories:

· AssessmentModelingTool – This directory contains the executable file for the Assessment Modeling Tool application (see section 4.2.2), along with all required support files (including the Java and C++ compilers). The main executable file used to launch the application is called SimplerCompiler.exe. You can also use the batch file (Assessment Modeling Tool.bat) located in the root directory of the DVD.

· AssessmentProjects – This directory contains the sample assessment projects used by the Assessment Modeling Tool. There are two included projects – AmputeeAssessment (used for both demos, TC3 and MMA) and TicTacToe (used for the test application included with the source code). Inside each of these directories is a project file called xxxProject.xml, where ‘xxx’ is the name of the project; these are the “project” files that should be opened by the Assessment Modeling Tool (File->Open). Also included in these directories are the schema and model XML files (see sections 4.2.3 & 4.2.4) that are referenced by the project file. When the Assessment Modeling Tool is used, the generated output goes into subdirectories called Cpp and Java that are located in the project directory.

· MMA – This contains the executable files for the OneTESS Mobile Medic Application demonstration prototype (PC version). To run the MMA simulation, execute the MMA-PC.exe file located in the MMA directory, or run the MMA.bat file located in the root directory of the DVD.

· Source – This directory contains all the source code for the LADMAT project components and the demonstration prototypes. This code is contained in three *.zip files called Assessment.zip, MMA PC.zip, and TC3.zip. The Assessment.zip file contains the source code for the Assessment Modeling Tool (C#), the BaseTypes library (Java and C++), the Java Assessment Engine Applet, and XmlTranslator Message Processors (Java & C++) (VisualStudio2005 and Eclipse projects). The MMA PC.zip file contains the source code for the Mobile Medic Application demo (VisualStudio 2005 project). The TC3.zip file contains the source code for the Tactical Combat Casualty Care demo (NOTE: the TC3 application was built using VisualStudio 2003; in Phase II this is being ported to VisualStudio 2005)

· TC3 Simulation - This directory contains the executable files for the Tactical Combat Casualty Care (TC3) demonstration prototype. To run the TC3 simulation, execute the TC3sim.exe file located in the TC3 Simulation directory and select the ‘Single Casualty – Amputee’ scenario (only this scenario is set up to use the assessment components), or run the TC3sim Amputee.bat file located in either the TC3 Simulation directory or the root directory of the DVD.

· Web – This directory contains the demonstration web page (AssessmentEngine.htm) along with the Java applet version of the Assessment Engine (AssessmentEngine.jar). To use this files, they need to be copied to an accessible directory on a web server (i.e. they will not work ‘in-place’). Because the Java code needs to be signed (for security purposes), this directory also includes the keystore file (adl.keystore) and a batch file (SignEngineJar.bat) that was used to originally sign the *.jar files. The included signatures are valid for six months from the date/time stamp on the *.jar files; after this date, these files may need to be resigned in order for them to work. There is also an included CreateKeystore.bat file that can be used as a template to create a new keystore file needed for *.jar signing (Java JDK required).

5.2 Using the Tools and Demonstration Prototypes

5.2.1 Assessment Modeling Tool

In order to use the Assessment Modeling tool, execute the Assessment Modeling Tool.bat file located in the root directory of the DVD, or execute the SimpleCompiler.exe file located in the AssessmentModelingTool directory (.NET 2.0 required on client machine). This will launch a Windows application that is used to open and compile assessment projects.

In order to use the tool to compile the AmputeeAssessment Event Data Schema and Assessment Model (used by both the TC3 and MMA demos), choose File->Open and navigate to AssessmentProjects/AmputeeAssessment in the root distribution directory and select AmputeeAssessmentProject.xml file. This will bring up a data grid that displays all the project and compiler settings, Event Data Schema classes and events, Assessment Model rules, and other settings that were loaded in from the project, Event Data Schema, and Assessment Model XML files. In order to change views in the data grid, you can select a different set of settings by using the drop-down box located in the upper-left corner.

Note: For this release (Phase I), the data grid is read-only and is used for informational purposes only; in order to change the project settings the *.xml files will need to be created/edited by hand using a text editor. In Phase II, a primary focus will be turning this ‘SimpleCompiler’ into a full-fledged GUI-based editor for assessment projects, allowing users to create and modify the project settings, Event Data Schema, and Assessment Models from within the tool.
Once the project has been loaded, you can create the Event Data Schema/Assessment model library by clicking the Build button. You can choose to create the library as a C++ native library (*.dll) and/or a Java library (*.class/*.jar) by checking the appropriate boxes. You can also choose the configuration for each platform (different configurations can be defined in the project xml file).

After the build process has finished, you can look at the results in the AssessmentProjects/AmputeeAssessment/Cpp and /Java directories. In these directories you will find both the source files and binaries that were generated by the tool. You will need to copy the generated library files (AmputeeAssessment.dll and AmputeeAssessment.dll.manifest for C++ and AmputeeAssessment.jar for Java) to the demo directories if you make any changes to them and want to incorporate those changes into the demo. For the C++ side, this generally means copying the .dll and .dll.manifest files to the run directory of the demo; for the Java side this means copying the .jar file to the web server.

5.2.2 Assessment Engine Web Page

The Assessment Engine web page is used to host the Java applet-based Assessment Engine component used for the demonstrations. In order to use it, you must copy the files in the Web directory to a working web server (i.e. the web page will not work ‘in-place’). The main page (AssessmentEngine.htm) has a hard coded URL embedded in it, so you will most likely have to make a quick edit to the page’s html in order to get the applet to work properly – simply look for the line:

<param name=”AppletUrl” value=”http://localhost:8080/AssessmentDemo />

and replace the value attribute with the correct server address of the web directory that the files were copied to.

Once you have configured the web server, you can launch the Assessment Engine by navigating to the AssessmentEngine.htm page. For the TC3 demo, select the ‘From Network’ option to listen to the event data messages from the simulation in real-time. For the MMA demo, select the ‘From File’ option and then click the Load File button to load in the MMA_Log.xml file generated by the simulation (post-processing).

The web page contains three text boxes that show the various stages of the assessment process working. In the top box, you can see the event data messages that were generated by the simulation. In the middle box, you can see the results of the Assessment Engine/Assessment Model processing in the assessment rule status update messages. Finally, in the bottom box you can see the status of the higher-level learning objectives, which in the real world would be sent on to an LMS.

Note: As of the end Phase I there is a known bug in this demo page in that, on some systems, a second pass through the simulation (either over the network or a via second Load File) crashes the assessment engine applet. The temporary work-around is to close the browser and re-open the page. This bug is being immediately addressed in Phase II.
5.2.3 Tactical Combat Casualty Care (TC3) Demonstration Prototype

To launch the TC3 demo, simply execute the TC3 Amputee.bat file located in the root of the distribution files. You can also execute the TC3sim.exe file located in the TC3 Simulation directory, however in that case you will need to select the “Single Casualty – Amputee” scenario from the game menu in order to demonstrate the assessment functionality (the assessment functionality is only configured to run with this scenario in Phase I; the other scenarios work, however they won’t export any assessment information outside the game).

The point of this particular demo is to show how a simulation can communicate to an Assessment Engine in real-time over a network. In order to demonstrate the assessment technology, you will need to have the Assessment Engine web page up and running (and set to ‘From Network’ mode) before you start the simulation (see section 5.2.2). The TC3 simulation will send event data messages to the web page and the Assessment Engine (running as a Java applet embedded in the page) will read in these messages and process them through the assessment model to generate assessment results.

When the scenario starts, you will see an amputee casualty lying on the ground in front of you. You can move around the simulation by using the ‘W’, ‘S’, ‘A’, and ‘D’ keys in order to walk forward, back, left, and right respectively. You can also use the mouse to adjust which way you are looking. In order to perform actions on the patient, right-click the mouse over the patient’s different body parts (you will see a large red “cross” icon when you are over a valid body part), and then left-click any one of the menu options to select the action. Some of the menus will bring you to a sub-menu, and to back out of any menu left-click outside of the menu. To exit the game, hit the ‘Esc’ key during normal play (i.e. when not within a menu system).

In order to correctly complete the learning objectives defined in the Assessment Model used for the demo, perform the following actions (in order) on the patient:

Hint: In order to stop the patient from flailing around, select the patient’s head and click ‘Communicate’ and then click ‘You’re going to be fine’. You can do this more than once (if he starts flailing again), and doing so will not effect the assessment results.
1. Select the patient’s head and click ‘Airway’ and then click ‘Check Breathing’

2. Select the patient’s right arm and click ‘Check Pulse’

3. Select the patient’s left arm and click ‘Expose’

4. Select the patient’s left arm and click ‘Tourniquet’ and then click ‘Apply Upper’

5. Select the patient’s head and click ‘Expose’

6. Select the patient’s head and click ‘Mark Forehead’

7. Select the patient’s left arm and click ‘Dressing’ and then click ‘Apply Gauze Dressing’

8. Select the patient’s left arm and click ‘Dressing’ and then click ‘Apply Pressure Dressing’

Technical Note

The TC3 demo was originally built using VisualStudio 2003 (VC7), and this has not changed for Phase I (it is currently being converted to VisualStudio 2005 (VC8) as part of the Phase II work). However, the BaseTypes library and the Event Data Schema and Assessment Models generated by the Assessment Modeling Tool are based on VC8. Therefore, The TC3 demo cannot use the schema/model libraries generated by Assessment Modeling Tool directly. Instead, the TC3 demo uses the source files generated by the modeling tool. These source files have compiled into a static library by the TC3 VisualStudio 2003 solution. This solution can be located in the distributed source code’s TC3.zip file at TC3\code\Win32\BaseFP.sln.

5.2.4 OneTESS Mobile Medic Application (MMA)

To launch the MMA demo, simply execute the MMA.bat file located in the root of the distribution files, or the MMA-PC.exe file located in the MMA directory. The MMA application is a port of a handheld PDA application built to run on top of Windows Mobile. This simulation (in its handheld form) is intended to be used by combat medic soldiers in the field during live training exercises.

For assessment purposes, the point of this demo is to show how the Assessment Engine components can be used in disconnected environments. Instead of the simulation connecting directly to the Assessment Engine in real-time (as is the case with the TC3 demo), the simulation will instead save out the event data generated by a simulation run to an xml-based log file (the data store). This log file will then be read into the Assessment Engine and processed at a later time. It should be noted that the MMA simulation uses the exact same Assessment Model as the TC3 application; all that has been changed is the internal event mappings within each simulations.

Once the MMA demo has been launched, click the ‘Launch Sim’ then ‘Get Casualty’ buttons to begin the simulation. In order to correctly complete the learning objectives defined in the Assessment Model used for the demo, perform the following actions (in order) on the patient:

1. From the bottom menu, scroll right to ‘Vitals Mode’, click ‘Check Airway’ then click on the patient’s head

2. From the ‘Vitals Mode’ menu, click ‘Check Breathing’ then click on the patient’s head

3. From the ‘Vitals Mode’ menu, click ‘Check Pulse’ then click on the patient’s right arm

4. From the top menu, select the ‘Shears’ item and then click on the patient to remove the clothing around the amputation (note: for a leg amputation, there is a minor bug in the simulation in that the pant leg is already removed; in this case just remove any other piece of clothing in order to meet the objective)

5. From the top menu, select the ‘Tourniquet’ item and then click on the amputated limb

6. From the bottom menu, scroll left to ‘Treatment Mode’ and click ‘Remove Kevlar’

7. From the ‘Treatment Mode’ menu, click ‘Mark Forehead’

8. From the top menu, select the ‘Gauze’ item and then click on the amputated limb

9. From the top menu, select the ‘Roll Bandage’ item and then click on the amputated limb

10. From the bottom menu, scroll right to ‘Report Status Mode’ and then click ‘Evacuate’

11. Click ‘Return to Main Menu’ to exit the simulation

Once the MMA simulation has ended, you should see a file called MMA_Log.xml located in the MMA directory. This is the event log file that will be used for assessment purposes by the Assessment Engine.

In order to assess the performance during the simulation, you will need to launch the Assessment Engine web page in a web browser (see section 5.2.2). Set the page to ‘From File’ mode, and then click on the Load File button. Navigate to the MMA directory and select the MMA_Log.xml file. The file will be loaded into the Assessment Engine applet and processed to generate the assessment results.

6 Requirements and Results Review

This section will review the results of Phase I of the LADMAT project with respect to the requirements outlined in the System Requirements Document (SRD) and the initial designs created in the System Design Document. It will describe how the current designs meet the requirements, which initial designs have remained the same, which designs have changed, and which requirements have been re-evaluated and/or re-prioritized due to insight gained during the development process and/or time constraints. This section will also include a brief overview of the planned design priorities for Phase II work.

6.1 Results Relative to Project Goals

The LADMAT project was successful in meeting all of the major goals outlined in the System Requirements Document. The following is a brief description of these objectives and how the current data model designs and software components created for the LADMAT project fulfill them:

Functional Goals

· Assessment Model Generation – The Event Data Schema and Assessent Model data models (*.xml files) created for the LADMAT project allow designers to describe the data and events that a given simulation will provide, and then describe the assessment logic (assessment models) used to assess learner performance for that simulation. The Assessment Modeler Tool uses these data models to generate code library “plug-ins” that can be used by both simulations and assessment applications to handle the mechanics of learner assessment.

· Simulation Definition – The Event Data Schema is the data model created to handle defining the data and events that a given simulation will broadcast for assessment purposes. The Event Data Schema exists in two forms – First, as an *.xml file that is used by developers/designers to define the data and events. Second, as a compiled code library “plug-in” generated by the Assessment Modeling Tool and used by both the Simulation Assessment and Assessment Engine components at run-time. The Event Data Schema can define data properties, complex objects (objects that contain other objects), enumerated values, and object lists that can be referenced by the assessment logic. The Event Data Schema can also define events that objects raise, triggering the rules defined in assessment models.

· Real-Time and Post-Processing Capability – The BaseTypes code library contains a base class called EventListener which can be derived from by sub-classes in order to handle simulation event data messages and assessment result messages in any way the sub-classes see fit. In order to handle real-time and post-processing assessment capability, the LADMAT project features EventListener-derived classes, called XmlTranslators, that are used to process xml-based messages in various ways; both over the network (real-time) and to/from a file (post-processing). The “plug-in” nature of the EventListener design will allow any number of message processors to be developed in order to handle various network protocols, file formats, and system architectures. As of this writing, BBN software has already developed a message processor plug-in for use specifically with the DTECS (Distributed Training Event Coordinator Service), which is part of the ADL Co-Lab’s Integrated Prototype Architecture.

Design Goals

· Adaptability – The LADMAT assessment system has been designed and developed from the ground up to be able to generically work with various assessment scenarios, simulation types, development platfoms, and system architectures. The basic rule types used in assessment models are designed to allow complex logic and task hierachies to be developed. The generic Event Data Schema format and the “plug-in” nature of the Simulation Assessment Component will allow almost any simulation to be integrated with the assessment system with only minor code changes. The ability of the Assessment Modeling Tool to create identical assessment models in various languages (C++, Java, etc.) will enable the assessment components to be used in mixed environments. And finally, the general “componentized” design of all the components will allow the assessment mechanisms to be integrated into many different types of architectures (Client/Server, Web Services, Browser-based, etc.)

· Extensibility – The LADMAT assessment system’s basic design allows for extended components to be built that can handle as-yet-unknown needs. The design of the Assessment Model Rules allow for new types of rules and rule templates to be developed to handle specific assessment needs. The EventListener interface allows new message processor components to be built that can send, receive, and process simulation event and assessment result messages in any way desired. And in a general sense, the overall distributed nature and separation between the simulation logging and assessment processes will allow new and specialized components to be developed and integrated into the system without having to redesign every other component.

· Usability – The Assessment Modeling Tool provides the user interface for developing Event Data Schemas and Assessment Models. As of Phase I, the goal was to develop the underlying “plumbing” to allow future creation of a GUI components that enable drag-and-drop design functionality, making it easy for non-programmers to develop the schemas and models. This plumbing is now in place, Phase II work will now focus on developing the actual user-interface components.

6.2 Changes From Initial Requirements and Design

This section will describe which requirements have been re-evaluated or re-prioritized due to insight gained during the development process and/or time constraints:

· Real-Time/Post-Processing Functionality – In the initial requirements, specific, formal components were intended to be built to handle the messaging streams from simulation to Assessment Engine, and from Assessment Engine to the training system (LMS). The final design instead opted for a more generic approach, with the creation of the EventListener interface for Message Processors. The EventListener interface allows any number of components to be built to handle real-time, post-processing, and any other type of messaging mechanisms needed. The XmlTranslator components built for the demonstration prototype application, while somewhat specific to the prototypes, nonetheless can be used as a reference for developers to build their own messaging components.

· .NET (C#, Visual Basic) Languages – The initial designs called for enabling the Assessment Modeling Tool to create Event Data Schema and Assessment Model libraries in C# and Visual Basic versions. Given the time constraints, and given the knowledge of Phase II work approval, the decision was made to push-back this functionality until Phase II. C++ and Java are the languages most prevalent in regards to simulation and training system development, and therefore it was felt that more effort should be devoted up front to designing and developing the other components. In addition, porting the code to .NET should be much easier now that the overall generic design has been more formalized and tested with the other languages.

6.3 Next Steps (Phase II)

The following is a brief overview of the development work intended for Phase II:

· Assessment Modeling Tool GUI – The main priority of the Phase II work is to create a GUI front end to the modeling tool to allow non-programmers to create and edit Event Data Schemas and Assessment Models. The idea is to allow users to create and organize the assessment logic (rules, rule hierarchy, etc) using simple dialog boxes and a graphical design surface.

· .NET Language Support – This work involves porting the BaseTypes library over to C# and enabling the Assessment Modeling Tool to create and compile the C# and Visual Basic source code files into .NET Event Data Schema and Assessment Model Libraries.

· Scripting Support – Currently, users can customize the assessment model logic by importing the generated source code files into their own development environments. However, this generally requires the skills of a professional programmer. A goal of Phase II work will be to allow customization of the logic directly within the Assessment Modeling Tool, by users with limited coding experience.

· Rule Templates – In order to make some of the more complicated assessment scenarios easier, it is intended that some rule templates will be developed that handle some of the more common assessment needs. For example, a “Distance” rule may be developed that will determine if one object is within a certain distance of another object.
· General Architecture Changes – Looking back on the Phase I development process, a number of design ideas have been brought up by the development team that could potentially make the assessment system more useful, efficient, and stable. One example that was mentioned previously in this document is breaking up of the Event Data Schema and Assessment Model libraries into separate physical files. Phase II will allow the time for this and other ideas to be further evaluated and possibly implemented.
PAGE
37

