	DATA ITEM TRANSMITTAL/ACCEPTANCE/REJECTION FORM
Contract N61339-06-R-0091

	CLIN/ELIN:000101 TITLE: Software Design Document

Block 14 Distribution: Joint ADL Co-Lab, PEOSTRI

	 Doc. Ref. No.: CDRL A003 Date: 22 May 2006

From:. Engineering & Computer Simulations, Inc. (Larry Kayne), 3501 Quadrangle Blvd, suite 260, Orlando, FL .32817

To: US Army Joint ADL-CoLab (Mr. Don Philpitt) 13501 Ingenuity Dive, Suite 248, Orlando Fl 32826

The above detailed CDRL item is forwarded for review and acceptance/ rejection. This item is due on 15 March 2007. The Government review period is 10 days.

Sincerely,

Signature: on file

Typed Name/Title: Larry Kayne, COO

	FIRST ENDORSEMENT: Date Received:

() Accepted.

() Accepted. Attached comments must be incorporated into the next

 scheduled submission. (This block is for use with periodically

 submitted items only.)

() Rejected, comments attached. Change pages () are () not sufficient

 for correction. Contractor is allowed () 30 days or () days

 to resubmit.

 Signature:

 Typed Name/Title:

 Code: Date:

	VIA: Date:

	VIA: PD Date:

	SECOND ENDORSEMENT:

() Accepted.

() Accepted conditionally. Attached comments must be incorporated in the

 next scheduled submission.

() Rejected, comments attached. Resubmit no later than .

 Signature:

 Typed Name/Title: Date:

 Contracting Officer

	CC w/Encl.:

	CC w/o Encl.:

Learner Assessment Data Model and

Authoring Tools for Tactical Combat Casualty Care (TC3)

Systems Design Document
Prime Contract Number N61339-06-R-0091
CDRL A003
Prepared for:

US Army

Joint ADL-Co-Lab

Attn: Don Philpitt
13501 Ingenuity Drive, Suite 248

Orlando, Fl 32826
Prepared By:

Engineering & Computer Simulations Inc.
3501 Quadrangle Blvd., Suite 260

Orlando, Fl 32817
(407) 823-9991 x 303

larrykayne@ecsorl.com
Security Classification: UNCLASSIFIED

Document Control Information

	Revision
	Revision History
	Date

	Ver. 0.1
	Initial Draft
	Mar. 2nd 2007

	Ver. 0.2
	Incorporate ECS Internal Review Updates
	Mar. 6th 2007

	Ver. 1.0
	Final Submission
	Mar. 15th 2007

	
	
	

	
	
	

	
	
	

	
	
	

Table 1 Document Control Information

11
Scope

12
Project Overview

12.1
Existing Assessment Technologies

52.2
LADMAT Architecture

83
Data Models and Protocols

83.1
Event Data Schema

8Overview

9Assessment Objects

10The Simulation Object

10XML Representation

13Class Diagrams

153.2
Event Data Protocol

15Overview

17SimulationStart Event Messages

17CreateObject Event Messages

20UpdateObject Event Messages

22DisposeObject Event Messages

22CustomEvent Event Messages

23SimulationStop Event Messages

233.3
Assessment Models and the Assessment Model Schema

23Overview

24Tasks

25Task Conditions

26Standard Task Condition Types

30Assessment Model XML Format

33Class Diagram

343.4
Results Data Protocol

34Overview

34Example XML File

374
Software Components

374.1
BaseAssessmentTypes

37Overview

38Class Diagram

394.2
Assessment Modeling Tool

39Overview

39Functionality

40Example Use

424.3
Simulation Assessment Component

42Overview

43The Assessment Component API

464.4
Event Message Translators

46Overview

47The Abstract MessageTranslator class

49XMLMessageTranslator

50Class Diagram

514.5
Assessment Engine Component

51Overview

51The AssessmentManager Class

51The AssessmentResultsProcessor Class

54Class Diagram

554.6
Assessment Results Component

55Overview

55SimulationResultsInterface

56Class Diagram

575
Demonstration Prototypes

57Overview

575.1
TC3 Simulation

585.2
OneTESS/TC3

1 Scope
This Software Design Document (SDD) will define the technical and architectural design of data models and software components that will be used to assess students across a range of training systems. This SDD addresses the Phase I functionality described in the Research Proposal (BAA N61339-06R-0001). This document will describe the design of a set of data models that logically encapsulate simulation data and events, learning objectives, assessment logic, and assessment results information. This document will also describe the design of an “assessment engine” and other related software components that will be used to read in a stream of training event data, evaluate that data according a set of rules, and output a stream of performance data (i.e. student progress/achievement/scores).
This SDD will not address the Phase Two functionality of the Research Proposal – the development of authoring/editing tools for the assessment data model and engine. While all the data models and software components developed in Phase One will be designed with the anticipated requirements of Phase Two in mind, the actual requirements for and design of Phase Two development will be outlined in a future document if/when Phase Two is approved.

2 Project Overview
The main goal of the Learner Assessment Data Model and Authoring Tools (LADMAT) project is to provide a generic, adaptable, and standardized mechanism for learner assessment during training simulations. In the context of this project, we are generally referring to ‘training simulations’ as PC or PDA game-based training simulations; however the data models and software components described herein will, by design, allow for other types of simulations (such as dedicated hardware-based simulators or live training) to interact with the assessment system as well.

The term “learner assessment”, in the context of this project, refers to the ability of a system to track a learner’s progress through a training simulation and generate a set of performance metrics. These metrics (i.e. scores, grades), can then be read in by other systems (i.e. an LMS or AAR system) to determine if the learner has satisfactorily met the learning objectives defined for the simulation. Furthermore, these metrics can then be used by other systems to provide structured feedback and/or appropriate remediation to the learner.
2.1 Existing Assessment Technologies
Existing assessment mechanisms can be loosely divided into two camps based on the type of learning environment they are used within – traditional static environments or dynamic simulation-based environments:
By static learning environments we are generally speaking of traditional teaching methods such as classrooms, books, and more recently e-learning technologies. We refer to them as static because the content is exactly the same for each student within a given unit of learning; whether the content is made up of lectures, text, pictures, or video each student will experience the same material in more-or-less the same order. In these environments, assessment generally comes in the form of written tests with pre-built questions that the student answers in a linear fashion. The benefit of this form of learning is that assessment can be highly structured, objective, and easily integrated into an encompassing training curriculum. The major drawback of static learning is that the training content is generally limited to what can be written in the pages of a book or displayed in a browser window.
In contrast, a dynamic learning environment generally refers to one in which the student interacts with the training material on some level, such as in a PC-based game, dedicated simulator, or live training exercise. In a dynamic environment, the training experience will most likely be different each time the learner is engaged with it. The means of assessment in dynamic learning environments is varied; in a game or simulation, there may be some internal scoring mechanism, while in a live training situation assessment may take the form of a subjective review by an observer/controller.
The benefits of dynamic learning environments, such as games or simulations, are well known; by being placed in an evolving, interactive environment the student can often grasp underlying concepts at a much deeper level. However, the problem with simulations is that it is often difficult to integrate them into the context of an overall training curriculum, alongside of traditional learning material. A training management system (such as an LMS) may or may not be able to launch and/or communicate directly with a simulation. Furthermore, a simulation’s internal scoring/assessment mechanisms, if they exist at all, were most likely built for use only within the simulation; they are not meant to be read by external systems and do not map directly to the overall learning objectives of a larger training curriculum.
In order to overcome these limitations, simulation designers and instructional designers have developed customized “one-off” methods for having a given simulation communicate with a specific LMS or AAR system. These customizations tend to take one of two forms (see Figures 1 and 2):
	[image: image1.jpg]
Figure 1

	[image: image2.jpg]
Figure 2

In Figure 1, the assessment takes place within the simulation itself, and the assessment results are read in by the LMS. In Figure 2, the assessment logic is handled by the LMS, and is based on event data (evidence) that is generated by the simulation (either via a log file or direct TCP connection). In both cases, the data that is transmitted from the simulation to the LMS is in a custom format that was developed specifically for that simulation/LMS pairing.
There are several problems with the above approaches that stem from their proprietary implementations and their lack of standardization. In the first case, the assessment logic is tightly coupled to and embedded within the simulation code. The assessment logic is therefore tied specifically to that one simulation, and cannot be changed without changing the simulation code itself. Changing or updating the assessment logic would most likely require the expertise of a C++ programmer who is intimately familiar with the code. Since most Instructional Designers or training managers do not have this expertise, the end result is that the assessment logic is rarely updated after the simulation is initially built.
In the second case, the assessment logic is part of the LMS or AAR system (most likely written in JavaScript or as a Java Applet embedded in a web page). This provides more flexibility, in the sense that the logic is not interwoven with the simulation code, and therefore can be updated without changing the simulation. However the logic is now tied to a specific unit of training (i.e. a SCO in an LMS) instead of the simulation, and to change it would still require programming skills (i.e. Java or JavaScript).
The biggest problem with both approaches, however, is the lack of standardization. Because there are no standard definitions or data formats for such common concepts as “evidence”, “assessment logic”, and “results”, these constructs/components end up getting rebuilt in a proprietary way for every simulation that requires assessment. This duplication of effort greatly increases development times and discourages the development of reusable and extendable assessment models. It also makes it difficult to build suites of tools and utilities that could make it easier for non-programmer types to create and update assessment models.
2.2 LADMAT Architecture

In order to overcome the problems arising from the existing simulation assessment architectures, the LADMAT project is introducing a new architecture wherein the assessment functionality is logically separated from either the simulation or the training system (see Figure 3):
[image: image3.jpg]
Figure 3
In this new architecture, a new software component called an “assessment engine” will be tasked with listening to evidence coming from a simulation (event data), process and evaluate this data according to a defined assessment model, and broadcast the results (i.e. status, scores, grades) to a training system (i.e. LMS or AAR system). The assessment engine acts as middleware between the simulation and training system, and as such frees the simulation or training system from having to handle any assessment logic internally. This architecture also allows the assessment functionality to become more standardized, allowing it to be used by any number of different simulations and/or training systems.
In order to extract the assessment functionality into its own process, yet still work within a variety of system architectures, there needs to be data formats and protocols that enable the exchange of data between the simulation and the assessment engine (evidence), and the assessment engine and the training system (results). These protocols will serve as a “contract” between the three processes, allowing each component to be upgraded and/or changed independently. This mechanism will also make it much easier for a component to be switched out and replaced by an entirely new component if desired. For example, a PC game-based simulation could be interchanged with a dedicated hardware-based simulation or even an observer log taken from a live training exercise, as long as they can all generate similar event data as defined by the event data protocol.
In summary, here are the major benefits that this new architecture provides over the previous ones:

· The simulation does not need to be customized for the training system it is being deployed within

· The training system does not have to know about the inner workings of the simulation it is launching
· Neither the simulation nor the training system have to keep track of the assessment logic

· The underlying assessment capability framework does not have to be rebuilt for each new simulation, allowing training simulations to be developed more rapidly and the assessment logic to be more stable
· Assessment models can be built and maintained in a standardized way, promoting reuse and extensibility

· Tools and utilities can be built that will make it easier for non-programmers to build and update assessment models

· Simulations and training systems can be upgraded and replaced more easily

· The assessment engine can be deployed in any number of physical configurations, such as a browser-based Java applet, simulation sub-process, server-side component, or web service

· The simulation does not necessarily have to be PC-based; it could be a dedicated hardware-based simulator or even a live training exercise tracked by an observer log

· Simulation runs can be “re-enacted” using different assessment models at any time

It should be noted that the new architecture described above is a logical model. In a working implementation the assessment engine may be physically deployed in a number of different forms, depending on the overall system it is deployed within. As described later in this document, the assessment engine will be built as a separate code library. This library may be run within the context of a client or server application or possibly within a web service. It may even end up physically running within the same process as the simulation or web page. The important point though, is that even if the engine is physically running in the same process, it is still logically separated from the other components and can be updated and maintained separately.
Detailed Design Diagram
The following diagram provides a detailed overview of all the LADMAT project components and how they relate to each other. The various components are labeled with the section numbers in this document where they are described:

[image: image4.jpg]
Figure 4
3 Data Models and Protocols

In order to promote standardization and to enable the separation of the simulation, assessment engine, and training system components, a number of data models (schemas) and communication protocols need to be defined. These schemas and protocols will ensure that the various components can communicate with each other either directly or through an intermediary data store (such as a file or database). The Assessment Modeling Tool (see section 4.2) will be in charge of building and maintaining the data models and keeping them in sync. The MessageTranslator and AssessmentResultsProcessor classes (described in sections 4.3 and 4.4) will be responsible for handling the translation duties for the communication protocols by streaming the data to and from specific wire or data store formats.
3.1 Event Data Schema

Overview

[image: image5.jpg]
Figure 5
The Event Data Schema represents the “contract” between a given simulation and assessment model (see Figure 5). Specifically, it defines the list of specific data structures and events that a simulation will update/raise at run-time. The architecture of the LADMAT project specifies that a simulation will need to broadcast logging messages that describe what happened during the course of a simulation run. The simulation does this by creating and maintaining assessment objects, which are complex data structures that encapsulate the state of the simulation at a given point in time. In most cases, these assessment objects will act as proxies for actual objects in the running simulation, such as a player, team, vehicle, weapon, fire alarm, etc. However the simulation developer is not bound by this methodology and can define assessment objects however it is deemed appropriate.

In addition to storing state data, assessment objects will also have the ability to raise events. Standard events, such as SimulationStart, CreateObject and UpdateObject will be incorporated into every Event Data Schema to handle events that are common to every simulation. In addition, a developer or instructional designer will be able to define custom events for each assessment object. For example, a “FireAlarm” object could be defined to raise “AlarmPulled” events.
The simulation will be responsible for generating messages that notify the assessment engine when an assessment object changes state or raises an event (these messages will either be sent to the assessment engine in real-time or be stored in an intermediary data store). It will be up to the simulation developer to decide the detail and granularity of these messages. For example, in some cases it may be important to track an object’s movement on a second-by-second basis, with the simulation continuously updating the X, Y, and Z coordinates of a given object as it moves within the virtual world. However, in most cases the simulation may only generate object update messages as needed, such as right before a major event.

The Assessment Engine, at some point in time, reads in these messages and essentially re-enacts the simulation run by re-creating the assessment objects and re-raising the objects’ events in the correct order. This re-enactment of the simulation run is analyzed per an assessment model in order to generate assessment results that are sent on to the LMS or AAR system. The purpose of the Event Data Schema, therefore, is to ensure that the simulation and Assessment Engine are both working off of the same set of assessment object types.
Assessment Objects

The Event Data Schema will be different for any given simulation, as each simulation contains its own unique data structures and raises its own unique events. However all Event Data Schemas will based upon a common logical model, allowing them to be manipulated and processed in standardized ways. The first thing to note about Event Data Schemas is that they are object-oriented, meaning that they are made up of object definitions. Each object definition describes an “assessment object” that can be conceptually instantiated and updated by the simulation. Assessment objects defined within Event Data Schemas possess the following general properties:

· Assessment objects are instantiations of defined data structures (i.e. types/classes)

· A simulation can instantiate one or more assessment objects of the same type

· Assessment objects can contain one or more strongly-typed custom properties
· Assessment object properties can be of the following property types:

· Primitive data types (integer, string, boolean, etc.)
· References to other assessment objects (complex types)

· Lists of primitive or complex data types (collections)

· User-defined state values (enumerations) i.e. High/Medium/Low; Active/Inactive; Park/Reverse/Neutral/Drive etc.
· All assessment objects will contain an ObjectId field that will hold a unique ID string value

· Assessment objects can raise custom events

· Custom events can be defined with their own data properties so that the simulation can provide auxiliary data when the event is raised

The Simulation Object

Every Event Data Schema will contain a root “Simulation” assessment object, which will act as the assessment proxy for the simulation as a whole. The Simulation object will contain the global data, methods, and events related to a given simulation run. For example, the Simulation object will be responsible for raising the SimulationStart and SimulationStop event messages. As an assessment object, the Simulation object will include an ObjectId field (i.e. the simulation ID), and can be designed to include any number of custom data fields and/or custom events. In fact, for very simple simulations and/or uncomplicated assessment models, the Simulation object may be the only assessment object needed.
The Simulation object will always be the first assessment object to be created by the simulation (or the Assessment Engine when the simulation run is re-enacted). Once created, the Simulation object will act as the “manager” for all other assessment objects, and as such will be responsible for creating and maintaining a catalog of all other instantiated assessment objects. The Simulation object will also provide the interfaces for sending messages (on the simulation side) and receiving messages (on the assessment engine side).
XML Representation

The Event Data Schema is created, managed, and compiled into code libraries by the Assessment Modeling Tool (see 4.2). The Assessment Modeling Tool can import and export the Event Data Schema from/to an XML file in order to allow visual inspection and manipulation by a standard text editor. The following is an example of an XML schema file for a simple simulation:
<?xml version="1.0" encoding="utf-8"?>

<EventDataSchema namespace="SimpleSimulation" version="1.2">

 <Simulation>

 <Properties>

 <Property name="DifficultyLevel" type="integer" />

 </Properties>

 </Simulation>

 <AssessmentObject typeName="Player">

 <Properties>

 <Property name="Rank" type="string" />

 <Property name="Location" type="Position" />

 <Property name="Weapons" type="List" listType="Weapon" />

 </Properties>

 <Events>

 <Event name="Attack">

 <Properties>

 <Property name="WeaponUsed" type="Weapon">

 <Property name="DamageInflicted" type="integer">

 </Properties>

 </Event>

 </Events>

 </AssessmentObject>

 <AssessmentObject typeName="Position">

 <Properties>

 <Property name="X" type="float">

 <Property name="Y" type="float">

 </Properties>

 </AssessmentObject>

 <AssessmentObject typeName="Weapon">

 <Properties>

 <Property name="Type" type="WeaponType">

 </Properties>

 </AssessmentObject>

 <Enumeration typeName="WeaponType">

 <Value name="Ax" />

 <Value name="Knife" />

 <Value name="Sword" />

 </Enumeration>

</EventDataSchema>
The <EventDataSchema> Tag

At the root of the XML file is the <EventDataSchema> document element tag. The <EventDataSchema> tag contains two mandatory attributes- namespace and version. The namespace attribute specifies the unique name of this schema, and the version attribute is used to further identify this schema as it is updated over time. The <EventDataSchema> tag contains three types of child elements, <Simulation>, <AssessmentObject>, and <Enumeration>.
Note: To avoid confusion, keep in mind that the Event Data Schema only defines the classes (types) of objects that can be created by a given simulation; it does not specify the individual objects that get created at run-time. A simulation run may happen to instantiate many objects of one specific type, and it’s also possible that a specific type may never be used.
The <Simulation> Tag

The <Simulation> element describes the custom properties and events for the Simulation object type. Since there is exactly one Simulation object within each Event Data Schema, this element must occur once and only once within the XML document. In the above example, the Simulation object type has one custom property defined (DifficultyLevel) and no custom events (note that all Simulation objects have other built-in properties and events, which are not described in the XML file). Other than described above, the rules for defining the Simulation object type’s custom properties and events are the same as those for <AssessmentObject> elements.
The <AssessmentObject> Tag

The <AssessmentObject> element defines the custom properties and events for each assessment object type defined in the Event Data Schema. There can be any number of <AssessmentObject> elements defined within the schema XML file (one for each type). Each <AssessmentObject> element will have a single attribute called typeName, which is used to specify the name of the type.

Each <AssessmentObject> element may have a single <Properties> child element, which if present contains the list of custom properties. The <Properties> element contains one <Property> child element for each custom property defined. Each <Property> element must have a name attribute and a type attribute. While the name attribute is self-explanatory, the type attribute requires a little explanation.

The <Property> element’s type attribute represents the type of data that the custom property will hold. The value of this attribute will be interpreted in the following way:

· Primitive Data Type – If the value string matches one of the following W3C XML Schema built-in data types, then the property will store data of that type: string, boolean, float, double, dateTime, integer
· Assessment Object Type – If the value string matches the typeName of an assessment object defined elsewhere in the xml document, then the property will be able to hold a reference to an object of that type
· Enumeration Type – If the value string matches the typeName of an enumeration defined elsewhere in the xml document, then the property will store one of the values in that enumeration
· List Type – If the value string is “List”, then the property will store a collection of data of the type specified in the following listType attribute; the listType attribute can be either a primitive data type or assessment object type
Each <AssessmentObject> element may also have a single <Events> child element, which if present contains the list of custom events. The <Events> element contains one <Event> child element for each custom event defined. Each <Event> element will have a single name attribute, which provides the name for the custom event. In addition, each <Event> element may contain custom data properties of its own. These properties can contain related data that a simulation may wish to provide whenever an event is raised. For example, in the above “SimpleSimulation” schema a “Player” object is defined that raises custom “Attack” events. According to this schema, every time the Player raises an Attack event the simulation will provide data on what weapon was used and the damage inflicted.
If an <Event> element defines custom properties, it will be in the form of a <Properties> child element that will follow the same structural rules as the <Properties> child element of the <AssessmentObject> tag. When compiled into code, the custom properties of an <Event> element will be encapsulated by a special CustomEventData-derived class.
The <Enumeration> Tag
Each <Enumeration> element will define a limited set of related values for use as a property type. For example, the above sample schema uses an enumeration called “WeaponType” that defines a list of valid weapon types. This WeaponType enumeration is used as the property type for the “Type” property of the “Weapon” assessment object. Once an <Enumeration> element is defined, it can be used as a property type by any property in the schema.
An <Enumeration> element will contain any number of <Value> child elements, each one specifying one unique value via its name attribute. The only limitation is that each value must be unique within that specific enumeration.
Class Diagrams
AssessmentObject and Derived Classes

The Event Data Schema defines the structure of assessment objects and is compiled into code libraries for various languages by the Assessment Modeling Tool (see Section 4.2). It is these code libraries that are dynamically loaded by the simulation and the Assessment Engine at run-time. The following class diagram provides a high-level outline of the base AssessmentObject class, the derived SimulationRoot class, and the concrete assessment object classes that get defined within the code libraries:
[image: image6.jpg]
Figure 6
As seen at the top of Figure 5, all assessment objects conceptually derive from an abstract AssessmentObject class. The AssessmentObject class contains properties and methods common to all assessment objects, including the ObjectId property and a static _idList property (a collection of all assessment object ID’s which is used to ensure that no two assessment objects have the same ID).
The abstract SimulationRoot class derives from AssessmentObject, and contains the properties and management methods common to all root Simulation classes. The Simulation class derives from SimulationRoot and represents the concrete singleton class instantiated once per simulation run. The Simulation class can include any number of custom properties and events as defined in the Event Data Schema.
The AssessmentObject_1, AssessmentObject_2, etc. classes represent hypothetical concrete assessment object classes that can be instantiated by the simulation (i.e. PlayerObject, FireAlarmObject, etc.). These classes, along with their custom properties and events are defined in the Event Data Schema.
CustomEventData and Derived Classes

AssessmentObject classes, as described earlier in this document, can raise custom events; and these custom events can have auxiliary data attached to them when they are raised during a simulation run. In order to accommodate this auxiliary data, a special class hierarchy will be defined in the Event Data Schema (see Figure 6):
[image: image7.jpg]
Figure 7
When the Assessment Modeler Tool compiles the Event Data Schema, it builds a special CustomEventData class for each event that contains custom data properties. These special classes all derive from an empty, abstract class called CustomEventData.

3.2 Event Data Protocol

Overview

The Event Data Protocol describes the logical format of the messages that are created and sent by the Simulation Assessment Component (see section 4.3), and which are read in by the Assessment Engine (see section 4.5). These messages are used to log the important events that occur during a given simulation run, and can be stored so that the simulation run can be “re-enacted” at any point in the future for assessment purposes. The Event Data Protocol is related to the Event Data Schema, in that the assessment object types defined in the schema provide the “source material” for the messages in the protocol.
While describing the Event Data Protocol, the examples in this document section will be using XML as the messaging format. This however, is not mandatory; the Event Data Protocol described herein is meant to be a logical format, with the actual physical message format being created and extracted by a specialized translator component (see section 4.4). Depending on the volume of data, different simulations may work optimally with different physical formats. XML, while very descriptive, is also very verbose; a simulation that puts out a large amount of assessment messages may work more efficiently with a more compact physical message format. In that case, a special translator that adheres to the message translator API could be built to handle creating and extracting messages in that specific format (See section 4.4 for more information).
The Event Data Protocol is essentially the specifications for event messages, that taken together, describe the significant events of a simulation run. There are six general types of event messages:
· SimulationStart

· CreateObject

· UpdateObject

· DisposeObject

· CustomEvent

· SimulationStop

According to the architecture of the Event Data Schema, all events (built-in and custom) originate from assessment objects. Therefore, every event message in the Event Data Protocol will contain a reference to the type and ID of the object that raised the event. Since the Simulation object acts as the manager of all other objects, most of the event message types will derive from it. In fact, all event types except UpdateObject and CustomEvent will derive from the Simulation object; the latter event types will derive from the assessment object being updated or the object raising the custom event.
The general requirements of the LADMAT project specify that event data (evidence) may be sent directly from the simulation to the Assessment Engine in real-time. Alternatively, the event data may also be sent from the simulation to an intermediary data store (i.e. file or database), to be read in by the Assessment Engine at a future point in time. Accordingly, the event messages as defined by the Event Data Protocol will stand alone as individual chunks of data that can be sent over the wire as the events occur in real-time, or assembled into a single log file to be post-processed by the Assessment Engine.
The following is an example of a typical event message in XML format:
<Event objectType="Simulation"

 objectId="Sim1"
 eventName="CreateObject"

 time="1538">
 <AssessmentObject type="Weapon" objectId="WP1">

 <Property name="Type">Knife</Property>

 </AssessmentObject>
</Event>
In the above example, the Simulation object is has raised a CreateObject event, signifying the simulation has instantiated a “Weapon” assessment object. The <Event> tag contains the attributes describing the type of object that raised the event, that object’s ID value, the event name, and the time the event was raised. Note that the time attribute contains the number of milliseconds that have passed since the start of the simulation; in this case the value “1538” specifies that the “Weapon” object was created approximately 1.5 seconds after the simulation started.
The <AssessmentObject> element is the payload for CreateObject event message, and it describes the object to be created. However, different event messages contain different payloads, as is described in detail in the following sections.
SimulationStart Event Messages

The SimulationStart event message serves two purposes: First, to signify the start of a simulation run; and secondly to provide the parameters needed to initialize the root Simulation object (including setting initial values for any custom data properties). The data sent with a SimulationStart message includes the simulation ID, the date/time the simulation started, and an <AssessmentObject> element that optionally initializes the custom properties defined for the Simulation object in the Event Data Schema.

In XML format, this is an example of a typical SimulationStart event message:

<Event objectType=”Simulation”

 objectId=”Sim1”

 eventName=”SimulationStart”

 time=”10/24/2006 10:52:00 AM”>

 <AssessmentObject type=”Simulation” objectId=”Sim1”>

 <Property name=”DifficultyLevel”>Intermediate</Property>

 </AssessmentObject>

</Event>
The logical structure of a SimulationStart event message is essentially the same as a CreateObject event message (see below), except in this case the object being created is the root Simulation object itself. Another slight difference is in the meaning of the time attribute value; in the case of the SimulationStart event the time value represents the actual date/time the simulation started (as opposed to the time elapsed since the simulation started, as is the case with the other event messages).
CreateObject Event Messages

CreateObject event messages signify to the reader (i.e. the Assessment Engine) that a new assessment object should be instantiated. The message includes an <AssessmentObject> structure that describes the initial values that should be set for each custom property. Note that not all custom properties defined for the object by the Event Data Schema need to be initialized here; if one of the object’s properties is not listed in the message, it will take on the primitive’s default value for that data type (or ‘null’ if the data type is a reference to another assessment object type, empty List structure if a list type).
The following is an example of a CreateObject event message in XML format that describes the initialization of an assessment object. In this example, the object being created is a hypothetical “Vehicle” object. The “Vehicle” object includes properties that reference other assessment objects (“VehiclePosition” and “Inventory”), and also a List property (“Tires”, a list of “Tire” objects):
<Event objectType=”Simulation”

 objectId=”Sim1”

 eventName=”CreateObject”

 time=”2456”>

 <AssessmentObject type=”Vehicle” objectId=”V1”>

 <Property name=”Make”>Ford</Property>

 <Property name=”Model”>F150</Property>

 <Property name=”Year”>2003</Property>

 <Property name=”Speed”>55</Property>

 <Property name=”VehicleType”>Truck</Property>

 <Property name=”VehiclePosition”>

 <AssessmentObject type=”Position” objectId=”P1”>

 <Property name=”X”>-81.38</Property>

 <Property name=”Y”>28.51</Property>

 </AssessmentObject>

 </Property>

 <Property name=”Inventory”>

 <ObjectReference type=”VehicleInventory” objectId=”I1” />

 </Property>

 <Property name=”Tires”>

 <AddItem>

 <ObjectReference type=”Tire” objectId=”Tire1” />

 </AddItem>

 <AddItem>

 <ObjectReference type=”Tire” objectId=”Tire2” />

 </AddItem>

 <AddItem>

 <ObjectReference type=”Tire” objectId=”Tire3” />

 </AddItem>

 <AddItem>

 <ObjectReference type=”Tire” objectId=”Tire4” />

 </AddItem>

 </Property>

 </AssessmentObject>

</Event>
At the top of the event message, the standard attributes describe the object raising the event (its type and ID), the event name (CreateObject), and the time of the event (elapsed milliseconds since the start of the simulation). The important point to note here is that it is always the Simulation object that raises CreateObject events, and NOT the object that is being created; the object being created is described within the enclosed <AssessmentObject> element.

A CreateObject event message will always contain one child element, <AssessmentObject>, which describes the object to create. The <AssessmentObject> element has two mandatory attributes, type and objectId, which describe the type of assessment object to create and the unique ID of the object respectively. The <AssessmentObject> element will contain any number of child <Property> elements that each describe a property to be initialized in the created object (again, not every property defined for the object has to be initialized).
Setting properties with primitive data types and enumerated values
Each <Property> tag initializes one property in the created assessment object, identified by the name attribute. The value of each property is specified between the start and end <Property> tags. For primitive value types (“Make”, “Model”, “Year”, and “Speed” in the above example), the string representation for the value is simply written between the tags (per the W3C XML standard). The same holds true for enumerated property types, where the enumeration value is written in string form (“VehicleType” in the above example is an enumerated property).
Setting properties that reference other Assessment Objects
For property types that reference other assessment objects there are two options for initializing the property, depending on whether the object being references already exists or if it needs to be created on the spot. If the object already exists, then the <Property> tag should contain an <ObjectReference> tag, that includes attributes for type and objectId. In this case, the type attribute refers to the type of object being referenced and the objectId attribute refers to the referenced object’s ID. See the “Inventory” property above for an example of this usage, as the “Inventory” property is referencing an existing “VehicleInventory” type object with and ID of “I1”.
However, if you wish to initialize an assessment object property type with a brand new object, then you can create the new object “in-line” via an additional “embedded” <AssessmentObject> tag. In the above example, the “VehiclePosition” property represents a reference to a “Position” object that doesn’t yet exist. In this case, the CreateObject event message is telling us to create a new “Position” object for the “VehiclePosition” to reference. It does this by including an embedded <AssessmentObject> tag that describes the initialization of the “Position” object.
Adding list items to List-type properties
Assessment objects can also have properties that represent a list of items; for example, the above CreateObject message is creating a “Vehicle” object which contains a List property (“Tires”) that holds a collection of “Tire” objects (when List properties are defined in the Event Data Schema, a list item type must be specified, and only items of that data type can be added to the list). When working with List properties, you don’t “set” them in the normal sense; instead you add, remove, and replace the items in the list. In the case of CreateObject event messages, you can only add to the list (removing and replacing will be covered below in the UpdateObject section). Referring to the “Tires” property in the above example, you can see that the <Property> element contains a number of <AddItem> child elements, each one describing a “Tire” item to add to the list. Since the “Tires” list was created specifically to hold “Tire” objects, the items we add need to be either references to existing “Tire” objects or in-line creations of new “Tire” objects. Therefore, when working with lists that are typed to contain assessment objects, the <AddItem> tags will enclose either an <ObjectReference> or <AssessmentObject> element respectively.
Structurally, the <AddItem> element works like a non-list <Property> element, in that it can hold a string representation of a primitive or enumerated value, an <ObjectReference> element, or an <AssessmentObject> element (depending on the List type).
UpdateObject Event Messages

The UpdateObject event message is used to signify that one or more properties of an assessment object have changed. Structurally, the UpdateObject message is very similar to the CreateObject message, except for the fact that the object that raises the event is the object being updated, and not the Simulation object.
The following is an example of an UpdateObject message in XML format. In this example, a “Vehicle” object is being updated by changing its “Speed” and “Inventory” properties, and by removing and replacing “Tire” object items from the “Tires” list property:
<Event objectType=”Vehicle”

 objectId=”V1”

 eventName=”UpdateObject”

 time=”5673”>

 <AssessmentObject>

 <Property name=”Speed”>65</Property>

 <Property name=”Inventory”>

 <AssessmentObject type=”Inventory” objectId=”I2”>

 <Property name=”Jack”>true</Property>

 <Property name=”Flares”>5</Property>

 <Property name=”FixAFlat”>false</Property>

 </AssessmentObject>

 </Property>

 <Property name=”Tires”>

 <RemoveItem>

 <ObjectReference type=”Tire” objectId=”Tire1” />

 </RemoveItem>

 <ReplaceItem>

 <Old>

 <ObjectReference type=”Tire” objectId=”Tire2” />

 <Old>

 <New>

 <ObjectReference type=”Tire” objectId=”Spare1” />

 <New>

 </ReplaceItem>

 </Property>

 </AssessmentObject>

</Event>
The UpdateObject event message contains a single <AssessmentObject> child element just like with the CreateObject message, except that the <AssessmentObject> tag does not require the type and objectId tags (this information is included in the parent <Event> element attributes). Other than that, the <Property> elements are used to change property values exactly like the CreateObject uses <Property> elements to initialize them.
In the above example, the “Speed” property is being changed to a value of 65 and the “Inventory” property is being updated to reference a new “Inventory” object that is created in-line, via an <AssessmentObject> tag (alternatively, an <ObjectReference> tag could have been used to change the reference to a different existing object). Also, the “Tires” list property is being altered in that one list item is being removed altogether and one item is being replaced with a new one.
As the above example illustrates, to remove an item from a list property you simply use a <RemoveItem> tag that contains an <ObjectReference> element referencing the objectId of the object to remove from the list. To add items, use the <AddItem> tag as described in the CreateObject message section above.
In order to replace an item in the list with a different item, you could just use an <RemoveItem> element followed by an <AddItem> element. Alternatively, you can use a <ReplaceItem> element instead, as is done in the above example. A <ReplaceItem> element has two child elements, <Old> and <New>; inside these elements are <ObjectReference> tags that reference the ID’s of the object being replaced and the object replacing it, respectively. Note that for the <New> tag, you could also use an <AssessmentObject> element instead in order to create a new assessment object in-line.

DisposeObject Event Messages

The DisposeObject event message is a short message signifying that a particular assessment object has been removed by the simulation. Once an assessment object has been disposed, it cannot be reinstated. Note that like in CreateObject messages, it is the Simulation object that is raising the event, because the Simulation object is conceptually managing all the other assessment objects.
The following is an example of a DisposeObject event message in XML format:

<Event objectType=”Simulation”

 objectId=”Sim1”

 eventName=”DisposeObject”

 time=”7565”>

 <ObjectReference type=”Tire” objectId=”Tire1” />

</Event>
In the above example, the simulation is signifying that the “Tire” object with ID “Tire1” is no longer being referenced by the simulation, and should be removed from the system.
Note: Care should be taken when disposing objects. In particular, if any other object references the disposed object, or if the disposed object is part of a List, then unexpected results may occur. Therefore, before an object is disposed, any references to it from other objects should be removed, and any lists containing the disposed object should remove it.
CustomEvent Event Messages
CustomEvent event messages are raised by individual assessment objects in order to signal that something of importance has happened related to the object. Custom events are defined by the designer of the assessment object in the Event Data Schema. For example, the designer of a “Lever” object may deem that the Lever object should raise “LeverPulled” events so that an assessment model can keep track of how many times the lever has been pulled.
The following example shows the XML format of a typical CustomEvent message that includes auxiliary data:

<Event objectType=”Tire”

 objectId=”Tire1”

 eventName=”Deflated”

 time=”87370”>

 <CustomEventData>

 <Property name=”VehicleMountedOn”>
 <ObjectReference type=”Vehicle” objectId=”V1”>

 </Property>

 <Property name=”MountPosition”>LeftFront</Property>

 </CustomEventData

</Event>
In the above example, a “Tire” object with an ID of “Tire1” has signaled that it is raising a “Deflated” event. In the Event Data Schema, the designer has specified the “Deflated” events will be accompanied by some auxiliary information, including a reference to the vehicle object that the tire is mounted on and the wheel on the vehicle where the tire is located. If a custom event is designed to include such auxiliary information, then the CustomEvent message must include a <CustomEventData> element to hold this data.

The <CustomEventData> tag works in the same way the <AssessmentObject> tag works in other message types, except that the object being described is not an assessment object but rather a CustomEventData-derived object defined in the Event Data Schema (see section 3.1). However, as far as the CustomEvent message is concerned, the property values of the CustomEventData object are set using standard <Property> tags, similar to those within <AssessmentObject> elements.
SimulationStop Event Messages
SimulationStop messages signify the end of the simulation run. All that is required of these message is an <Event> tag, as in the following example:
<Event objectType=”Simulation”

 objectId=”Sim1”

 eventName=”SimulationStop”

 time=”2345436” />
3.3 Assessment Models and the Assessment Model Schema

Overview

The Assessment Model Schema describes how a given assessment model can encapsulate the actual logic and performance measurements that are used to assess the actions of a learner during a given simulation run. This schema defines the format for outlining a task hierarchy made up of tasks, sub-tasks, task conditions, and other related information within an assessment model. It also provides a framework for the valid mechanisms and logical constructs that are used in assessment models to evaluate the evidence of a simulation run (the Event Data Protocol messages), and roll-up that information into a set of assessment results.
For purposes of clarity, It may be helpful to make a distinction between the terms “Assessment Model Schema” and “assessment model”. The Assessment Model Schema is the conceptual structure and data format used to create assessment models. An assessment model is a concrete implementation of this schema created for a specific simulation.
An assessment model is a logical structure that can take on different physical forms depending upon the context in which it is being used. While being created and/or updated, an assessment model can be persisted in the form of an XML file. It is this format that the Assessment Modeling Tool (see section 4.2) uses when saving and opening assessment model projects. At run-time, however, the assessment model takes the form of a compiled code library (i.e. a DLL or Java class/jar file). These code libraries are created by the Assessment Modeler Tool for use within a specific language/environment.
Tasks

The primary construct of the Assessment Model Schema is a “Task”. A Task defines a particular unit of accomplishment within a simulation. Tasks are the basic building blocks of an assessment model, and information pertaining to tasks is what is compiled in order to produce the assessment results for a learner during a given simulation run. Top-level tasks can be mapped to specific learning objectives within an LMS or AAR system, and therefore provide the interface between the world of simulations and the world of managed learning environments.
Structurally, tasks are made up of a list of “task conditions”. Task conditions are the “rules” that determine whether a task has been completed and, optionally, how a task is scored. There are various types of task conditions and a task can contain any number of them. Task conditions interact with their containing tasks through an event-based mechanism, in that as the status of a task condition changes it raises events that are heard and evaluated by the containing parent task. Task conditions are explained in further detail in a following section.

Tasks also implement an interface that determines when they have been “activated” and “deactivated”. This is so that assessment model logic can track when a task has been started and stopped. A task’s conditions will only be evaluated while the task is active. In the current implementation of the Assessment Model Schema, this is accomplished by assigning each task an “activate event” and a “deactivate event”. These events can be either assessment object events, task events, or task condition events. For example, a “Shift Gears” task may be only active between an “Engine Started” and an “Engine Stopped” event. For tasks that should be active at all times during the simulation run, the SimulationStarted and SimulationStopped events should be assigned to the activate and deactivate events respectively.
Note: As of this writing the current implementation of the task activation interface limits each task to being activated only once. However, it is foreseen that there may be a need for “re-activating” tasks several times during a single simulation run. The activation interface has therefore been designed so that this feature may be implemented in the future.
Tasks have two main attributes, TaskStatus and TaskScore. TaskStatus is determined by a combination of the task’s activation state and the states of all its task conditions. TaskStatus will be set to one of the following enumerated values:
· NotAttempted – This means that the learner did not (or could not) engage in any action toward completing the task. Technically, this means that the task was never activated.
· InProcess – This is the status of a task during a simulation run while a learner is actively attempting to (and is able to) complete the task. Specifically, a task is considered InProcess after it has been activated but before it or any of its parent tasks have been deactivated (or the simulation has ended). An important implication of this logic is that a task should never end up in this state if the simulation run has ended correctly (i.e. without errors).
· Incomplete – A status of Incomplete means that the task was attempted but was never completed. In a strict sense it means that the task was activated, however its parent task was deactivated, has failed, or that the simulation has ended, before the task itself was properly deactivated.
· Completed – A Completed task is one in which the learner has met all of the task’s assigned conditions. From a technical standpoint it means that the task was activated, all of the task conditions were met (including sub-tasks), and the task was properly deactivated, in that order.
· Failed – A task status of Failed means specifically that the learner either did something irreversibly wrong, or has failed to take a required action within an appropriate time period. Technically, task failure implies that the task was activated and that one of the task conditions has failed (see below for a specific description of task condition failure).
TaskScore is a numeric, single-precision (float), value between 0 and 1 which is used to provide a scaled measurement for each task. By default, TaskScore is calculated by summing up the weighted scores of all its contained task conditions.
Task Conditions

Task conditions, as mentioned above, are the rules that determine whether a task has been completed, and possibly how a task is scored. There are various types of standard task conditions, and different task condition types can be used side-by-side within the same task. Also, the task condition architecture is designed such that designers and/or developers can create new types of task conditions. However, all task conditions contain several common attributes- IsSatisfied, ConditionScore, Weight, and Order:
· IsSatisfied – The IsSatisfied attribute is a boolean value (true/false) whose value describes whether the task condition is satisfied or not. This value is calculated at run-time by the internal logic of the specific of task condition type.
· ConditionScore – The ConditionScore is a numeric, single-precision (float), value between 0 and 1 that represents the actual score the learner achieved on the task condition as calculated by the specific task condition type’s logic.

· Weight – This attribute is a real numeric value between 0 and 1 that can be set in the assessment model at design-time. This value determines the relative weight that a parent task assigns to the score of a task condition. By default, the weight for each task condition is assigned a value of 1, meaning that all tasks condition scores are to be weighted equally when determining the score of the parent task.

· Order – This attribute is a positive integer value equaled to 0 or greater that represents the relative order that this task condition must be accomplished relative to the other task conditions in the parent task (assuming the parent task is set to “ordered”). If a higher-ordered task condition is satisfied before all lower-ordered task conditions in the same task are satisfied then the parent task’s status will be set to Failed. Note that more than one task condition can have the same order value in a task; this implies that those particular conditions can be satisfied in any order, as long as they each are satisfied after any lower-ordered conditions (and before any higher-ordered ones).
Standard Task Condition Types

There are several built-in task condition types that analyze a simulation’s event messages in different ways. While tasks conditions are designed to be extensible, in that developers can customize them to create new types of task conditions, the standard task condition types described in this section have been developed to handle the most common scenarios.
Before describing the standard task conditions, the concept of an ObjectIdentificationParameters object must be explained. The problem with most task conditions is that they are often based on the events or state of a specific assessment object. However, at design-time there are no assessment objects actually in existence; it is only at run-time that assessment objects are actually instantiated. Therefore, there needs to be a mechanism whereby the task conditions can be linked to a particular object as soon as the object is created. This is especially applicable if the ObjectId values cannot be known ahead of time, as is often the case.
ObjectIdentificationParameters are objects that are designed to enable this on-demand linking mechanism. An ObjectIdentificationParameters object is configured for a task condition at design-time with an assessment object type and a list of property name/value pairs (primitive data types only). When an assessment object is instantiated during the simulation run, the assessment model checks the ObjectIdentificationParameters assigned to each task condition to see if the new object matches the defined parameters (i.e. if it is the correct type and each of the property values are the same). If the object matches what the task condition is looking for, then the task condition is linked to that object. If more than one object matches, then it will be up to the specific task condition type to determine how to handle it.
EventRaisedCondition

The EventRaisedCondition type is a simple task condition that becomes satisfied when the simulation raises a specific event a pre-determined number of times. This condition type will most likely serve as the basic building block for many assessment models.
On top of the standard task condition attributes, the EventRaisedCondition has three additional ones, TriggerEvent, MinOccurrences, and IncrementalScoring:

· TriggerEvent – this is an construct that contains an ObjectIdentificationParameters object along with an event name; together, this identifies a specific assessment object event that the condition will listen to
· MinOccurrences – this attribute is an integer value (1 or greater) that specifies how many times the event must occur for the condition to be considered satisfied
· IncrementalScoring – this attribute is a boolean value that determines if the score is calculated incrementally based on the number of times the event has occurred (see below)

The ConditionScore for EventRaisedConditions can be either be scored incrementally based on the number of event occurrences or not, depending on the boolean IncrementalScoring value. If IncrementalScoring is set to false (default), then the ConditionScore will be set to 0 if the condition is not satisfied, or 1 if the condition is satisfied. If IncrementalScoring is set to true, then the ConditionScore will be set to a value between 0 an 1 (inclusive) depending on how many times the event has been fired relative to the MinOccurrences value. For example, if MinOccurrences is set to 4 and the event has been raised 2 times, then the ConditionScore will be set to .5.
As a working example of an EventRaisedCondition, a “Secure Weapon” task might include a “Engage Safety” task condition. When the weapon object raises its “SafetyEngaged” event, then the task condition will be set to satisfied and the score will be set to 1.
StateCondition
A StateCondition is another simple condition that becomes satisfied when an assessment object’s property is set to a specified value. This condition type is assigned a specific assessment object property and value, and the condition is evaluated each time the object’s UpdateObject event is raised. If the object property is set to the given value, then the condition is set to satisfied.
A StateCondition has four specific attributes over and above the standard task condition attributes:

· The ObjectIdentificationParameters attribute is used to link the condition to a specific assessment object

· The PropertyName attribute specifies which assessment object property to evaluate (string value)
· The Operand attribute specifies whether the property value must be equal to, greater than, less than, greater than or equal to, or less than or equal to the TargetValue; this is only valid for numeric property types (string value equal to “>”, “<”, “>=”, “<=”, or “=”)

· The TargetValue holds the specific value that the property value will be compared to in order to determine if the StateCondition is satisfied (string value)
The ConditionScore for StateConditions is simply set to 0 if the condition is not satisfied, or 1 if it is satisfied.
An example of a StateCondition could be found in a theoretical “Change Tire” task, where one of the conditions of the task being that the vehicle must be jacked up more than 8 inches off the ground. The StateCondition would be assigned to the “JackHeight” property of the vehicle object, and each time the vehicle object was updated, the condition would check to see if the “JackHeight” property was greater than 8. If so, then the condition would be set to satisfied.
SubTaskCondition

A SubTaskCondition is specifically designed to hold a “child” task, and as such it represents the basic mechanism for creating a task hierarchy. SubTaskConditions are used to “roll up” status and score information, and can be nested within each other an unlimited number of times. The task condition is considered satisfied when the child task’s status is set to satisfied.
A SubTaskCondition has only one additional attribute on top of the standard attributes, and that is the SubTask attribute. This attribute holds a reference to another task.
The ConditionScore for SubTaskConditions is simply the same as the child task’s TaskScore value.

SwitchCondition
A SwitchCondition contains a list of StateConditions paired with “action” conditions (these can be task conditions of any type). At run-time, the SwitchCondition runs through the list of StateConditions and to find the first one that is set to “satisfied”; if a satisfied StateCondition is found, then the SwitchCondition activates that StateCondition’s paired “action” condition. In essence, a SwitchCondition allows a sort of “If-Then-ElseIf-Else” functionality to be included in an assessment model, enabling the assessment model to dynamically change based on conditions existing during a simulation run.

The SwitchCondition is probably best explained by example: Imagine a hypothetical “Coordination Parent Task”, containing a SwitchCondition called “Insert Peg Condition”. The “Insert Peg Condition” would contain a list of StateConditions paired with other “action” conditions. In table form, this might look like this:
	Insert Peg Switch Condition

	State Conditions
	“Action” Conditions

	Round Peg State Condition
	Insert in Round Hole Condition

	Square Peg State Condition
	Insert in Square Hole Condition

	Triangle Peg State Condition
	Insert in Triangle Hole Condition

At run-time, when the parent “Coordination” task is activated, the “Insert Peg” SwitchCondition will evaluate each state condition in the list. If one is found to be “satisfied”, then the SwitchCondition will activate its respective “action” condition (which can be a task condition of any type). Note that if more than one StateCondition is satisfied, then only the “action” condition of the first one will be activated.
So, if in the above example the current “peg” object’s shape property was set to “square” when the “Coordination” task was activated, then the “Square Peg Condition” would be set to “satisfied”. Because of this, the “Insert Peg Condition” would set its “action” condition to be the “Insert in Square Hole” condition, and the “Insert Peg” switch condition’s status would be derived from the “Insert in Square Hole” condition status.

A SwitchCondition adds two custom attributes the first of which, SwitchList, contains the list of StateCondition / “action” condition pairings. The second custom attribute, DefaultCondition, is a task condition that is used as the “action” condition if none of the StateConditions are satisfied. The DefaultCondition can be null, in which case no task condition is used and the SwitchCondition is set to “incomplete”.
The ConditionScore for a SwitchCondition is set match the score of the active “action” condition; if no “action” condition is activated, then the score is set to 0.
Assessment Model XML Format
A specific assessment model can be persisted in an XML-format file. This file can be used, for instance, by the Assessment Modeler Tool in order to store the model as part of an assessment model project. The following two pages contain an example assessment model XML file, the basic structure of which is outlined as such:
· ChangeTire (parent Task, must satisfy both conditions in order)

· ParkCar (SwitchCondition, must do one depending on transmission type)

· FirstGear (StateCondition)

· TransmissionInPark (EventRaisedCondition)

· MountSpareTire (SubTaskCondition, must do all in order)

· JackVehicleUp (EventRaisedCondition)

· ReplaceTire (EventRaisedCondition)

· JackVehicleDown (EventRaisedCondition)

<AssessmentModel schemaNamespace=”TireChangeSchema” schemaVersion=”1.2”

 modelNamespace=”TireChangeModel” modelVersion=”2.0”>

 <Task name=”ChangeTire”>

 <ActivateEvent eventName=”TireDeflated”>
 <ObjectIdentificationParameters objectType=”Tire” />

 </ActivateEvent>

 <DeactivateEvent eventName=”SimulationStop” >

 <ObjectIdentificationParameters objectType=”Simulation” />

 <Conditions ordered=”true”>

 <Condition name=”ParkCar” conditionType=”SwitchCondition” order=”1”>
 <SwitchList>
 <Item>

 <State>

 <Condition name=”ManualTransmission”

 conditionType=”StateCondition”

 order=”0”>

 <ObjectIdentificationParameters objectType=”Vehicle”>

 <Property name=”ObjectId”>Veh1</Property>

 </ObjectIdentificationParameters>

 <Property name=”TransmissionType” operand=”=”>Manual<Property>

 </Condition>

 </State>

 <Action>

 <Condition name=”FirstGear” conditionType=”StateCondition”

 <ObjectIdentificationParameters objectType=”Vehicle”>

 <Property name=”ObjectId”>Veh1</Property>

 </ObjectIdentificationParameters>

 <Property name=”CurrentGear” operand=”=”>1<Property>

 </Condition>

 </Action>

 </Item>

 <Item>

 <State>

 <Condition name=”AutomaticTransmission”

 conditionType=”StateCondition”

 order=”1”>

 <ObjectIdentificationParameters objectType=”Vehicle”>

 <Property name=”ObjectId”>Veh1</Property>

 </ObjectIdentificationParameters>

 <Property name=”TransmissionType” operand=”=”>Automatic<Property>

 </Condition>

 </State>

 <Action>

 <Condition name=”ParkTransmission”

 conditionType=”EventRaisedCondition”>

 <TriggerEvent eventName=”TransmissionInPark”

 minOccurrences=”1”>

 <ObjectIdentificationParameters objectType=”Vehicle”>

 <Property name=”ObjectId”>Veh1</Property>

 </ObjectIdentificationParameters>

 </TriggerEvent>

 </Condition>

 </Action>

 </Item>

 </SwitchList>

 </Condition>

 (continued on next page...)
 <Condition name=”MountSpareTire” conditionType=”SubTaskCondition”

 order=”1”>

 <Task>
 <ActivateEvent eventName=”TireDeflated”>

 <ObjectIdentificationParameters objectType=”Tire” />

 </ActivateEvent>

 <DeactivateEvent eventName=”SimulationStop” >

 <ObjectIdentificationParameters objectType=”Simulation” />

 </DeactivateEvent>

 <Conditions ordered=”true”>

 <Condition name=”JackVehicleUp”

 conditionType=”EventRaisedCondition”
 order=”0”>

 <TriggerEvent eventName=”VehicleJackedUp”

 minOccurrences=”1”>

 <ObjectIdentificationParameters objectType=”Vehicle”>

 <Property name=”ObjectId”>Veh1</Property>

 </ObjectIdentificationParameters>

 </TriggerEvent>

 </Condition>

 <Condition name=”ReplaceTire”

 conditionType=”EventRaisedCondition”

 order=”1”>

 <TriggerEvent eventName=”TireReplaced”

 minOccurrences=”1”>

 <ObjectIdentificationParameters objectType=”Vehicle”>

 <Property name=”ObjectId”>Veh1</Property>

 </ObjectIdentificationParameters>

 </TriggerEvent>

 </Condition>

 <Condition name=”JackVehicleDown”

 conditionType=”EventRaisedCondition”

 order=”2”>

 <TriggerEvent eventName=”VehicleJackedDown”

 minOccurrences=”1”>

 <ObjectIdentificationParameters objectType=”Vehicle”>

 <Property name=”ObjectId”>Veh1</Property>

 </ObjectIdentificationParameters>

 </TriggerEvent>

 </Condition>

 </Conditions

 </Task>

 </Condition>

 </Conditions>

 </Task>

</AssessmentModel>
Class Diagram
The following diagram describes the various assessment classes:

[image: image8.jpg]
Figure 8
3.4 Results Data Protocol

Overview

The Results Data Protocol describes the logical format of the messages that are created and sent by the Assessment Engine (specifically by a StandardResultsProcessor object, refer to section 4.5 for details). These messages are used to log the assessment results that are generated by an assessment model for a given simulation run, so that they can be uploaded into a managed learning environment (i.e. an LMS or AAR system). The messages in the Results Data Protocol are in XML format, and they can be sent directly to an Assessment Results Component in real-time, or they can be stored in a file or database (data store) for upload into a managed learning environment at a later date.
There are two basic kinds of messages described by the Results Data Protocol, TaskUpdate messages and Summary messages. TaskUpdate messages are sent by the Assessment Engine each time an assessment task’s status and/or score changes. This allows a reader of these messages to track when and it what order the various tasks were completed (or failed) for a given simulation run. Summary messages, on the other hand, are sent by the Assessment Engine only once per simulation run. The Summary message simply lists each task defined in the assessment model and provide it’s final status and score. If a reader is only interested in the final results, then it can simply search for this single Summary message and extract the needed information.
An assessment task’s status only changes when the status of one of its task conditions change; therefore TaskUpdate messages are made up of inner ConditionUpdate messages. ConditionUpdate messages contain the status and score values for each task condition, and every time a condition’s status or score changes a ConditionUpdate message is generated (wrapped in a TaskUpdate message).
Example XML File
Probably the best way to understand the Results Data Protocol is to view a sample XML file that was generated by the Assessment Engine for a simple simulation run. The assessment model below contains one task (“Task1”) that has two task conditions (“Condition1” & “Condition2”). At 4.5 seconds after the simulation started, the learner satisfied “Condition1“, and at 9.4 seconds the learner satisfied “Condition2“. When “Condition2“ is satisfied, “Task1“ becomes satisfied and is given a score of 1. The output below shows how these messages would be generated:
<?xml version="1.0" encoding="utf-8"?>

<AssessmentResults modelNamespace="TireChangeModel"

 schemaVersion="2.0"

 simulationStartTime="10/24/2006 10:52:00 AM">

 <TaskUpdate taskName="Task1">

 <ConditionUpdate conditionName="Condition1" time="4533">

 <ConditionStatus>Satisfied</Status>

 <ConditionScore>1</Score>

 </ConditionUpdate>

 <TaskStatus>InProcess</TaskStatus>

 <TaskScore>.5</TaskScore>

 </TaskUpdate>

 <TaskUpdate taskName="Task1">

 <ConditionUpdate conditionName="Condition2" time="9483">

 <ConditionStatus>Satisfied</Status>

 <ConditionScore>1</Score>

 </ConditionUpdate>

 <TaskStatus>Completed</TaskStatus>

 <TaskScore>1</TaskScore>

 </TaskUpdate>

 <Summary>

 <Task taskName="Task1" time="9483">

 <Status>Satisfied</Status>

 <Score>1</Score>

 </Task>

 </Summary>

</AssessmentResults>

In the above XML file, the root element is the <AssessmentResults> element. This element contains three attributes- modelNamespace, schemaVersion, and simulationStartTime. The modelNamespace attribute represents the name of the assessment model and the schemaVersion attribute specifies the version of the assessment model used for the simulation run. Finally, the simulationStartTime attribute specifies the actual date and time of the simulation run (taken from the SimulationStart event message).
Contained within the <AssessmentResults> element are a number of <TaskUpdate> elements. These elements are generated each time one of a task condition’s status or score changes (thereby changing the containing task’s status or score). Each <TaskUpdate> element has one attribute, taskName. The taskName attribute’s value is the name of the task as defined in the assessment model (each task’s name is required to be unique within a given assessment model).

Each <TaskUpdate> element contains three child elements- <ConditionUpdate>, <TaskStatus>, and <TaskScore>. The <ConditionUpdate> element contains the updated information (status and score) for the task condition whose status or score change caused the task to be updated. Each <ConditionUpdate> element contains attributes for conditionName and time. The time attribute contains the number of milliseconds elapsed since the start of the simulation when the condition update occurred. The <TaskStatus> and <TaskScore> elements contain the status and score values for the task after the task condition was updated.

The last child element of every <AssessmentResults> element will be the <Summary> element. The <Summary> element will contain one <Task> element for each task in the assessment model. Each <Task> element will have attributes for taskName and time. The time attribute will represent the number of milliseconds elapsed since the start of the simulation run when the task’s last update occurred. Within each <Task> element will be two child elements, <Status> and <Score>; these elements will contain the final status and score values for the task respectively.
4 Software Components

4.1 BaseAssessmentTypes

Overview

The BaseAssessmentTypes component is a code library (C++/C# DLL, Java class) that defines the various base classes that are used by other software components in the LADMAT project architecture. The purpose of the BaseAssessmentTypes library is to provide a common set of interfaces throughout the assessment system. This library is for the most part made up of abstract classes that are inherited by the concrete implementations of assessment objects, tasks, task conditions, translators, messages, and other objects. Therefore, the BaseAssessmentTypes library will be referenced by most all of the other software components, including the Assessment Modeling Tool, Simulation Assessment Component, Assessment Engine, and Message Translators.
Class Diagram

The following class diagram provides an overview of the primary base classes contained within the BaseAssessmentTypes library (refer to other sections for more detail diagrams):

[image: image9.jpg]
Figure 9
4.2 Assessment Modeling Tool

Overview

The Assessment Modeling Tool is the software responsible for creating Event Data Schemas for specific simulations and for creating Assessment Models based on those schemas. The Assessment Modeling Tool is made up of a command-line executable and a software component (*.dll), written in C#, that act as a “code generator”, creating and compiling code libraries that encapsulate assessment objects (Event Data Schemas) and assessment logic (Assessment Models). The code libraries that the tool creates can be compiled for different languages (C#, Java, C++) so that they can be used on different platforms. For example, a C++ data schema could be compiled and integrated into a simulation in order to output event messages, while an assessment model based on that schema could be compiled in Java to be used by a Java servlet-based assessment engine that reads in the event messages.
In order to provide an interface to the modeling component’s functionality, a command-line executable has been designed. This executable takes as input an XML file and uses the modeling component to output either an Event Data Schema library or an Assessment Model library, along with the generated source code. If desired, a developer could bring this source code into a specific development environment (such as Visual Studio or Eclipse) in order to customize it in order to provide extended or enhanced functionality; however at this point the developer would be responsible for final compilation, and for making sure the basic interfaces still work as designed.

In addition to the Assessment Modeling Tool component, a Windows-based application prototype has been created that provides a GUI front-end to the modeling component’s functionality. This GUI application allows an assessment model designer to create, modify, save, and compile Event Data Schemas and Assessment Models using standard Windows dialogs and drag-and-drop functionality. Note: The development of a Windows GUI application is formally part of Phase II of the LADMAT project, and therefore not officially a requirement of the Phase I functionality described here. However, a working prototype has been developed in order to demonstrate the capabilities of the Assessment Modeling Tool; therefore while it has been mentioned here, this document will not describe its specific design aspects in detail.
Functionality

The Assessment Modeling Tool takes as input an XML file and generates as output a set of source code files and (optionally) a compiled library (.dll). When used from a command-line, the tool accepts the following command-line parameters:
· -schema filename.xml – This parameter identifies an event data schema XML file (see section 3.1) to be used as input, which will contain the definitions for assessment objects for a given simulation; this parameter can be used without an accompanying -model parameter, in which case only the schema source code and library will be generated
· -model filename.xml – This parameter identifies an assessment model XML file (see section 3.3) to be used as input, which contains the definitions for assessment tasks and task conditions; this parameter must be used with an accompanying –schema parameter, as an assessment model is by design based on a specific event data schema
· -cs, -java, -cpp – These parameters specify the language(s) that the modeling tool will generate source and compiled code for (-cs = C#, -java = Java, -cpp = C++); the user can provide one or more of these parameters for each run, and the tool will generate separate code for each language
· -output directoryname – This parameter specifies the main output directory where the source and compiled code will be written to; there will be a separate sub-directory underneath the specified directory to store the code for each language

Example Use

The following example show how the Assessment Modeling Tool can be used from the command-line:
Example 1
This example shows the creation of an event data schema and an assessment model based on it. The event data schema input file is called “TireChangeSchema.xml” and the assessment model input file is called “TireChangeModel.xml”. Code will be generated (source and compiled) in both Java and C++. The resultant files will placed in sub-directories located underneath a directory called “C:\TireChangeOutput”:
C:\AssessmentModeler.exe –schema C:\Schemas\TireChangeSchema.xml

 –model C:\ModelsTireChangeModel.xml
 –java –cpp

 –output C:\TireChangeOutput
Example 2

This example shows the creation of just an event data schema. It is similar to Example 1, however in this case only the event data schema code will be generated:

C:\AssessmentModeler.exe –schema C:\Schemas\TireChangeSchema.xml

 –java –cpp

 –output C:\TireChangeOutput
Output
The tree diagram on the following page shows what the output of Example 1 would look like (Example 2’s output would look the same except for the existence of the “Models” directory). Note that directory/sub-directory names are shown in italics. Also note that in the case of java source code, both class files and a jar archive are produced:
TireChangeOutput

 |

 Schemas

 |

 Java

 |

 Simulation.class
 Driver.class

 Vehicle.class

 TireChangeSchema.jar

 Source

 |

 Simulation.java

 Driver.java

 Vehicle.java

 CPP

 |

 TireChangeSchema.dll

 Source

 |

 Simulation.h

 Simulation.cpp

 Driver.h

 Driver.cpp

 Vehicle.h

 Vehicle.cpp

 Models

 |

 TireChangeModel

 |

 Java

 |

 SecureVehicleTask.class

 ParkCarCondition.class

 TireChangeModel.jar

 Source

 |

 SecureVehicleTask.java

 ParkCarCondition.java

 CPP

 |

 TireChangeModel.dll

 Source

 |

 SecureVehicleTask.h

 SecureVehicleTask.cpp

 ParkCarCondition.h

 ParkCarCondition.cpp
4.3 Simulation Assessment Component

Overview

The purpose of the simulation assessment component is to provide a simple mechanism for a simulation to output event messages in the proper format (see section 3.2) for reading by an Assessment Engine. It will be up to the simulation developer to integrate the Simulation Assessment Component into a given simulation, and the developer is not required to use the components and/or mechanisms described here. All that is required of a simulation for it to be assessed is that it output data in the right format (the Event Data Protocol), and in the right way (to a file/data store or directly via TCP/IP). If developers wish to provide their own components/mechanisms for creating and broadcasting these messages, they are free to do so.
The simulation assessment component described here is compiled into a dynamic library (AssessmentComponent.dll) written in C++ that can be loaded into the simulation process (C++ was chosen because most simulations are written and compiled in C++). The assessment component contains an API that exposes a few simple methods that simulations can call to initialize the component and to create and send event messages. The basic steps that simulation code needs to take are as follows:
· Include the AssessmentComponent.lib and BaseAssessmentTypes.lib and their respective header files in the simulation project

· Create a new AssessmentComponent object

· Call the AssessmentComponent object’s LoadSchemaLibrary() method in order to pass in the location and name of the event data schema library (a *.dll file)

· Call the AssessmentComponent object’s LoadTranslatorLibrary() method in order to pass in the location and name of the message translator library (a *.dll file), and set any parameters needed by the translator via the SetTranslatorParameter method (see section 4.4)

· Signal the start of the simulation by creating a SimulationStartParameters object and passing it in to the AssessmentComponent’s SendMessage() method
· During the simulation run, create and send event messages by creating CreateObjectParameters, UpdateObjectParameters, DisposeObjectParameters, and CustomEventParameters objects and passing them in to the AssessmentComponent’s SendMessage() method

· Signal the end of the simulation by creating a SimulationStopParameters object and passing it in to the AssessmentComponent’s SendMessage() method

The Assessment Component API

The simulation assessment component’s main API method signatures and usage are as following:
int LoadSchemaLibrary(char* schemaLibName)

The LoadSchemaLibrary() method loads the event data schema library (a *.dll file) into memory so that the AssessmentComponent has access to the specific assessment objects for that simulation. The schemaLibName parameter is the name and location of an event data schema file created by the Assessment Modeling Tool (see section 4.2). The method returns 0 if the method executed properly, or an integer error code if not.
usage:
int retVal = _assessmentComponent->

LoadSchemaLibrary(“C:\\TireChangeSchema.dll”);

int LoadTranslatorLibrary(char* translatorLibName)

The LoadTranslatorLibrary() method loads the translator library (a *.dll) file into memory so that the AssessmentComponent can send event messages in the correct physical format (see section 4.4 for a description of message translator libraries). The translatorLibName parameter is the name and location of library that contains an object that inherits from the MessageTranslator abstract class (defined in the BaseAssessmentTypes.dll library). The method returns 0 if the method executed properly, or an integer error code if not.
usage:
int retVal = _assessmentComponent->

 LoadTranslatorLibrary(“C:\\ XMLMessageTranslator.dll”);

int SetTranslatorParameter(char* parameterName, char* parameterValue)

The SetTranslatorParameter() method is used to generically set parameters for a specific message translator that has been loaded by the AssessmentComponent. For example, the XMLMessageTranslator library contains a “Mode” parameter that determines if the translator should output the event messages directly to the assessment engine over a TCP/IP socket or if the messages should go into a file for post-processing. If the “Mode” parameter is set to “File”, then the simulation code would call the method again to set the “OutputFile” parameter. The method returns 0 if the method executed properly, or an integer error code if not.
usage:
int retVal = _assessmentComponent->
 SetTranslatorParameter(“Mode”, “File”);

retVal = _assessmentComponent->
 SetTranslatorParameter(“OutputFile”,

 “C:\\SimulationOutput.xml”);

int SendMessage(EventParameters* eventParameters)
The SendMessage() method is used to instruct the AssessmentComponent to send an event message (the message is forwarded on to the MessageTranslator, which handles the actual creation and sending of the physical message to a file or over a TCP/IP socket). In order to use this method, an EventParameters object for the specific message type must first be created to be passed in to the method (SimulationStartParameters, CreateObjectParameters, UpdateObjectParameters, DisposeObjectParameters, CustomEventParameters, or SimulationStopParameters). EventParameters objects are available as part of the BaseAssessmentTypes.dll library. The method returns 0 if the method executed properly, or an integer error code if not.
usage:
//create ‘start’ parameters, set a custom property value,
//and send the message

SimulationStartParameters* startParams =
 new SimulationStartParameters(“SimID1”, &time);

startParams.SetProperty(“Name”, “Tire Change Simulation”);

retVal = _assessmentComponent->SendMessage(startParams);
//create ‘create vehicle’ object parameters, set property values,
//and send the message

CreateObjectParameters* createVehicleParams =

 new CreateObjectParameters(“Vehicle”, “V1”, &time);

createVehicleParams.SetProperty(“Type”, “Truck”);

createVehicleParams.SetProperty(“Speed”, “55”);

retVal = _assessmentComponent->SendMessage(createVehicleParams);
Class Diagram

[image: image10.jpg]
Figure 10
4.4 Event Message Translators
Overview

The purpose of Event Message Translator libraries are to translate the EventParameter objects used internally by the Simulation Assessment Component and the Assessment Engine to send and receive event messages (see sections 4.2 and 4.4) into a specific physical format (i.e. XML). An implementation of a translator library will contain a translator class that inherits from the abstract MessageTranslator class contained in the BaseAssessmentTypes.dll library. The inheriting translator class will need to provide a concrete implementation for the pure virtual methods contained in the MessageTranslator base class.
The reason for this architecture is so that message translators can be built to handle many different physical formats. For the LADMAT project, a specific XMLMessageTranslator library has been built that handles sending and receiving event messages in XML format, according to the Event Data Protocol. However, XML is a verbose format that may prove inefficient for simulations that output a copious amount of event messages. Therefore, the architecture described in this section is designed specifically so that other message translators can be built that work with alternative message formats.
As mentioned previously, an event message translator library is loaded dynamically by the AssessmentComponent on the simulation side and the AssessmentEngine on the assessment side. If used on the simulation side, the simulation will use the translator to send messages via the SendEventMessage() method; alternatively, if used on the assessment side, the assessment engine will use the translator to retrieve messages via the RetrieveNextEventMessage() method. The methods provided by the library will generally provide the capability to send messages both to and from a file and to and from a TCP/IP socket. In general, a developer of a specific simulation and/or assessment engine client will not call these methods directly. Instead, the methods are the required API for the library to be used as a “plug-in” for the simulation assessment component and/or the assessment engine component.
Note: If the simulation and assessment engine are running on different platforms (i.e. C++ and Java), an implementation of the translator will need to provided for both platforms. Both Java and C# have mechanisms for loading and accessing native code libraries (i.e. *.dll’s compiled from C++ source), so in most cases the non-native implementations will simply be wrappers around the native library used on the simulation side.
The Abstract MessageTranslator class

The abstract MessageTranslator class exists in the BaseAssessmentTypes.dll library. Concrete translators for specific formats class must inherit from MessageTranslator and provide concrete implementations for the following members:
int SetParameter(char* parameterName, char* parameterValue)
The SetParameter() method is a generic method that can be used to set any initialization parameters needed by the translator. Examples of common parameterName’s would be “Mode”, “Host”, “LocalPort”, “SchemaName”, “SchemaVersion”, etc. A concrete message translator that implements this method can use it to set any parameters it needs for operation. Note that the parameterValue parameter is always represented as a character string, and any concrete translator library will have to handle any casting that may be needed. The method should return 0 if it executed properly, or an integer error code if not.
The specific parameters available to be set will ultimately be up to a specific translator’s implementation. However, it is intended that each translator support the functionality required to be able to send and receive messages both in real-time and via an intermediary data store (i.e. file). Therefore, for purposes of compatibility all translators should implement the following standard parameters:

· Mode – This parameter should set translator up for either real-time (TCP/IP) use or for sending and receiving messages to/from a data store (post-processing). Standard parameter values should be “RealTime” or “PostProcessing”.
· Host – This parameter should hold the value for the IP address or domain name of the sending/receiving machine (when using the translator in real-time mode).

· LocalPort – This parameter should hold the value for the port number being used by the process the translator is running in (when using the translator in real-time mode).

· RemotePort – This parameter should hold the value for the port number being used by the remote process the translator is communicating with (when using the translator in real-time mode)

· Filename – This parameter should hold the value of the simulation output file that the translator is writing to or reading from (when using the translator in post-processing mode).

int SendEventMessage(EventParameters* eventParameters)

The SendEventMessage() method is designed to be called internally by the simulation assessment component to send event messages. The eventParameters parameter is a pointer to an object inheriting from the abstract EventParameters class in the BaseAssessmentTypes.dll library, and in use will be one of the following:
· SimulationStartParameters

· CreateObjectParameters

· UpdateObjectParameters

· DisposeObjectParameters

· CustomEventParameters

· SimulationStopParameters

Exactly what this method does and how it does it will be up to a specific translator implementation. However, it is intended that this method perform the following actions:

1. Translate the EventParameters object into the specific physical format that the translator is designed to work with

2. Depending on the mode set previously (i.e. either “RealTime” or “PostProcessing”, send the formatted message to a file or over a TCP/IP socket to the assessment engine

3. Perform additional processing for specific message types as needed; for example, a SimulationStop message may prompt the translator to close the file (post-processing mode) or end communication with the assessment engine (real-time mode)

The method should return 0 if it executed properly, or an integer error code if not.

int RetrieveNextEventMessage(EventParameters* eventParameters)

The RetrieveNextEventMessage() method is designed to be called internally by the Assessment Engine when the translator is used to retrieve event messages from a file or TCP/IP socket. The translator will be responsible for reading in the next message and translating it from the specific format it uses into an EventParameters object that it returns to the Assessment Engine via the method’s eventParameters* return parameter.
Exactly what this method does and how it does it will be up to a specific translator implementation. However, the RetrieveNextEventMessage() method will most likely need implement specific functionality in certain cases:

1. When the method is first called, the translator may need to open the file or open the TCP/IP socket connection per the parameters that were set during initialization

2. When there are no more messages to retrieve, the translator should make sure to close the file or end communication over the TCP/IP socket.

The method should return 1 if a message was properly retrieved, 0 if there are no more messages to retrieve, or an integer error code greater than 1 if an error was encountered.

XMLMessageTranslator

For use in the demonstration prototypes, a specific implementation of the MessageTranslator class has been designed to handle translating event messages to and from an XML format that abides by the Event Data Protocol. This standard translator will provide a concrete implementation of all the virtual methods contained in the abstract MessageTranslator class, and will be contained in its own code library (implemented in C++, C#, and Java).

This XMLMessageTranslator will provide the capability to read and write event messages from a file or over a TCP/IP socket. In addition to being a working implementation of a message translator, it will also serve as an example for how to create a message translator for other formats.

Class Diagram

The following class diagram describes the abstract MessageTranslator class and a specific XMLMessageTranslator class that inherits from it:

[image: image11.jpg]
Figure 11
4.5 Assessment Engine Component
Overview
The Assessment Engine is the software component that handles reading in event messages from a simulation run, analyzing the information per a given assessment model, and writing out the assessment results. For the LADMAT project, the Assessment Engine will take the form of a code library (C++, C## .dll or Java .class file) so that it can be integrated into different learning environments in various ways (desktop application, Java applet, web service, etc.). It should be noted that in a strict sense the Assessment Engine component does not perform any analysis itself; rather it acts as a “broker” that manages the interaction between the event messages, a specific MessageTranslator object, an assessment model, and a results processor (described below).
The AssessmentManager Class

The Assessment Engine component contains one primary class, AssessmentManager, which is instantiated by a client application (i.e. Java Applet, Web Service, etc.) in order to manage the assessment process. The client application initializes the AssessmentManager with the name of the assessment model library, and a MessageTranslator object (that itself has been initialized with an event message source, i.e. a host/port location or the name of a data store/file). The client application will also have to provide the AssessmentManager with a means to report back the assessment results. This is done by providing the AssessmentManager with an object that inherits from the abstract AssessmentResultsProcessor class (see below). The client application will register this object with the AssessmentManager via the RegisterResultsProcessor() method. A given client application can register multiple AssessmentResultsProcessor instances with the AssessmentManager, each doing different things with the results.
After the AssessmentManager has been fully initialized, the client application will signal to begin processing event messages by calling the AssessmentManager’s BeginProcessing() method. This method informs the AssessmentManager to open and process the message file or to start listening for messages coming over a TCP/IP socket, depending on the mode of the MessageTranslator.
The AssessmentResultsProcessor Class

The AssessmentResultsProcessor is an abstract class located in BaseAssessmentTypes.dll that contains two virtual methods, ProcessSimulationEvent() and ProcessAssessmentEvent(). The specific method signatures are as follows (example shown in C#):

void ProcessSimulationEvent(EventParameters eventParameters)

void ProcessAssessmentEvent(AssessmentEvent assessmentEvent)

A given implementation of the AssessmentResultsProcessor class will override these methods in order to provide specific functionality. By implementing the two different methods, an AssessmentResultsProcessor-based class can enable a client application to track exactly how each simulation event effects the assessment results in a step-by-step fashion. For example, a client application could step through a simulation run event-by-event to determine exactly what sequence of simulation events caused a task to fail.
The AssessmentManager will first call the ProcessSimulationEvent() method on each registered results processor object whenever an event message is read-in by the assessment model (i.e. CreateObject, CustomEvent, etc). This method essentially acts like a “pass-through” for simulation event messages, so that a client application can have a chance to see the simulation events before they have been processed through the assessment model. The AssessmentManager passes an eventParameters object into the method (this object is of the same type (EventParameters) that is used by the Simulation Assessment Component and the abstract MessageTranslator class (see sections 4.2 and 4.3 respectively)).

Similarly, the AssessmentManager will call the ProcessAssessmentEvent() on each registered processor object whenever the status or score for a Task or TaskCondition has changed. These changes are termed “Assessment Events”, and taken together they represent the assessment results for a given simulation run. When the AssessmentManager calls the ProcessAssessmentEvent() method, it passes it an assessmentEvent parameter, which is an object containing the details of the Task/Task Condition update.
It will be up to a specific implementation of the AssessmentResultsProcessor class to decide what to do in these methods. For example, a hypothetical “DisplayResultsProcessor” could be used by a client application to update a form or chart that tracks a learners progress throughout a simulation run. Similarly, a “ReportResultsProcessor” could be designed that sends the information to a report generator. These implementations may or may not care about the simulation events themselves; in other words, they might only care about the results. In this case an implementation may choose to do nothing in the ProcessSimulationEvent() method, and only provide specific functionality within the ProcessAssessmentEvent() method.
In accordance with the general design goals of the LADMAT project, and in order to implement the desired functionality of the demonstration prototypes, three specific implementations of the AssessmentResultsProcessor class have been designed whose purpose it is to format results according to specific protocols:
StandardResultsProcessor

The StandardResultsProcessor will be used to output the assessment results according to the format of the Results Data Protocol (see section 3.4). The Results Data Protocol is a generic XML format that represents the standard output of the Assessment Engine. Any client application or software component that is designed to read in messages in this format may use the StandardResultsProcessor to get access to the assessment results. The StandardResultsProcessor only implements the ProcessAssessmentEvent() method, and provides no functionality to the ProcessSimulationEvent() method.
The StandardResultsProcessor will be able to send the result messages directly to another software component in real-time via a TCP/IP socket connection, or alternatively it will be able to save the messages to a file to be read in by another component/application at a later date.

SCORMResultsProcessor

In order to track a simulation within an LMS, the tasks defined in the assessment model will need to be mapped to specific SCORM ‘Objectives’ defined in a Shareable Content Object (SCO). The SCORMResultsProcessor will therefore provide a method, called MapObjectiveToTask(), that the client application will call once for each Objective (this is must be done before the SCORMResultsProcessor is used by the AssessmentManager). The full method signature looks like this (in C#):
void MapObjectiveToTask (string objectiveId, string taskName)

When the SCORMResultsProcessor’s ProcessAssessmentEvent() method is called, it will check to see if the Task has been mapped to a SCORM objective; if so, the processor will translate the Task’s status and score into valid SCORM values and create an XML message to be sent to a client component (i.e. an Assessment Results Component, refer to section 4.5).
The SCORMResultsProcessor will be able to send the result messages directly to the results component in real-time via a TCP/IP socket connection, or alternatively save the messages to a file to be read into the LMS at a later date (post-processing).

RDCEOResultsProcessor

The Reusable Definition of Competency or Educational Objective (RDCEO) specification, as defined by the IMS Global Learning Consortium, defines an information model for describing, referencing, and exchanging definitions of competencies. According to this specification, a “competency” generally refers to skills, knowledge, tasks, and/or learning outcomes that are used in the context of distributed learning systems. These competencies are often broken down into Tasks, Conditions, and Standards. In this context, Tasks refer to the behavior exhibited by a student, Conditions describe the circumstances under which the student performed the task, and Standards describes to what level of proficiency the student performed the task.
The constructs of Tasks, Conditions, and Standards described above roughly correlates to the Tasks, AssessmentObject states, and Task Scores as defined by an assessment model. Since the Assessment Engine reports on when assessment object’s change state, when tasks are completed, and when task scores are updated, it becomes feasible to create a results processor that maps these assessment events to the Tasks, Conditions, and Standards of a competency (as defined by the RDCEO).

Therefore, an RDCEOResultsProcessor will be built, similar in function to the SCORMResultsProcessor, that handles the mapping between the RDCEO constructs of Tasks, Conditions, and Standards to a given assessment model’s Tasks, AssessmentObjects, and Task Scores. This processor will provide MapRDCTaskToTask(), MapRDCConditionToProperty(), and MapRDCStandardToScore() methods to handle the mappings. As output, the RDCEOResultsProcessor will create an XML file detailing the results, per the RDCEO specification.
Class Diagram

[image: image12.jpg]
Figure 12
4.6 Assessment Results Component

Overview

The term “Assessment Results Component”, in the context of the LADMAT project, loosely refers to any mechanism (software component, web page, database interface, etc.) that receives assessment results from the Assessment Engine (or more specifically, from an AssessmentResultsProcessor object registered with the Assessment Engine). An Assessment Results Component will most likely be a mechanism embedded into a given training management system, such as an LMS or an AAR system. Therefore it is hard to detail general specifications for such a component outside the context of a specific system, other than that the component must somehow interface with a given AssessmentResultsProcessor object, either in real-time via an intermediary data store.
However, one of the requirements of the LADMAT project is that the assessment functionality be shown operating within the context of an LMS. Therefore a specific example of an Assessment Results Component that works within an LMS environment has been designed that can interact with a SCORMResultsProcessor object running in an Assessment Engine. This component, called a SimulationResultsInterface, is described in the following section.
SimulationResultsInterface

An LMS is designed to distribute learning content within the context of a web page running in the context of a browser. In the TC3 Simulation demonstration prototype (see section 5.1), the simulation will be launched from a web page, and the assessment results it generates will need to be uploaded back up to the LMS via that same web page (or another page within the same SCO). To support this functionality, a SimulationResultsInterface has been designed as a Java applet that will handle the LMS interface to the Assessment Engine.
The SimulationResultsInterface applet will be launched from a web page delivered by the LMS. When the simulation runs, the applet will call a BeginProcessing() method that will open up a TCP/IP socket to listen for assessment result messages coming from the SCORMResultsProcessor object registered in the Assessment Engine. The SimulationResultsInterface applet will contain an UpdateLMS() method that it will call when each message is received. This method will in-turn call a javascript method embedded in the web page in order to upload the LMS Objective status/score information into the LMS.
Class Diagram

[image: image13.jpg]
Figure 13
5 Demonstration Prototypes

Overview

This section will briefly describe the prototype applications that will be built to demonstrate the functionality of the various LADMAT project data models and software components.

5.1 TC3 Simulation

This demonstration prototype will be based on the Tactical Combat Casualty Care (TC3) PC-based simulation developed by ECS, and will demonstrate the assessment system working entirely in real-time. The simulation will be launched by an LMS, the simulation will be tracked by an assessment engine, and the assessment engine will upload the assessment results back into the LMS immediately.
The TC3 Simulation prototype will use the assessment system components in the following manner:

· Event Data Schema – An Event Data Schema for the simulation will be built using the Assessment Modeling Tool and will be compiled into both C++ and Java libraries.

· Simulation Assessment Component – A Simulation Assessment Component will be compiled into a native code dynamic library (.dll) and run within the same process as the simulation. It will use the C++ Event Data Schema library in conjunction with an XMLMessageTranslator to send event data messages to the Assessment Engine.
· XMLMessageTranslator – An XMLMessageTranslator will be used to translate the event data messages to and from the internal EventParameters objects used by the Simulation Assessment Component and the Assessment Engine.

· Assessment Model – A specific assessment model will be built using the Assessment Modeling Tool and compiled into a Java library.

· Assessment Engine – A Java-based Assessment Engine Component will run within the context of the Java Web Start application used to launch the simulation.

· SCORMResultsProcessor – A SCORMResultsProcessor object will be used by the Assessment Engine to translate the assessment model’s Task update messages into SCORM Objectives.
· SimulationResultsInterface – A SimulationResultsInterface applet will run in a web page that listens to the results from the Assessment Engine and uploads them into the LMS for reporting and remediation.
5.2 OneTESS/TC3

The OneTESS/TC3 simulation is related to another project that ECS is working that demonstrates a simulation working within a live training environment (OneTESS refers to the One Tactical Engagement Simulation System, being developed by AT&T in conjunction with the US Army). In this scenario, a live training exercise will generate a simulated casualty with specific wounds that are determined by the OneTESS system. At that point, information about these wounds will be transferred to a special version of the TC3 simulation (either running on a PC or handheld PDA). A combat medic will then be tasked with treating the simulated casualty using the simulation.
The purpose of using this simulation environment as a prototype for the LADMAT project is to demonstrate the assessment system working in a disconnected environment. The simulation, in this case, will not be launched from of an LMS or AAR system, and therefore the simulation event data will need to be stored and processed by the assessment system at a later date. Under this scenario, the simulation will store the event data into an XML file on the device that the simulation is running on (i.e. PC or PDA). The instructor or trainee will then upload this file (at a later date and time) into an Assessment Engine running in the context of a desktop application. The assessment application will in-turn output the assessment results to another XML file. This XML file will serve as the record of the combat medic’s performance during the live training exercise, and could be loaded into an LMS or AAR system as needed.
The OneTESS/TC3 demonstration prototype will use the assessment system components in the following manner:

· Event Data Schema – An Event Data Schema for the simulation will be built using the Assessment Modeling Tool and will be compiled into a C# library.

· Simulation Assessment Component – Since the simulation may be running on a PDA, a custom Simulation Assessment Component will be built that simply outputs an XML file according to the Event Data Protocol. (The point here is to demonstrate the flexibility of the Event Data Protocol, in that any training platform that can generate an XML file can be assessed using the LADMAT system).

· XMLMessageTranslator – An XMLMessageTranslator will be used on the Assessment Engine side to translate the event data messages in the XML file created by the simulation.

· Assessment Model – A specific assessment model will be built using the Assessment Modeling Tool and compiled into a C# library.

· Assessment Engine – A C#-based Assessment Engine Component will run within the context of desktop application that is run on a PC.
· StandardResultsProcessor – A StandardResultsProcessor object will be used by the Assessment Engine to translate the assessment model’s Task update messages into an XML file that conforms to the Results Data Protocol.
· StandardResultsInterface – A StandardResultsInterface will be custom-built to specifically display the assessment results in a custom report (demonstrating how assessment results could be uploaded into an AAR system).

