
S1000D – SCORM Bridge Application Programming Interface (API)
Bridging the gap between S1000D and SCORM

	
9/30/2011

Version 1.0

Table of Contents
1	Introduction	3
1.1	Overview	3
1.2	Purpose	3
1.3	Scope	3
1.4	Conceptual Environment and Assumptions	5
1.5	Intended Audience	6
1.6	Organization of this Document	6
2	S1000D – SCORM Bridge SOAP API Overview	7
2.1	Services Architecture	9
3	Web Service Operation Definitions	9
3.1	Connect	9
3.2	Disconnect	11
3.3	Search	11
3.4	GetCSDBObject	14
3.5	AddCSDBObject	14
3.6	ApproveCSDBObject	15
3.7	CheckOut	17
3.8	UndoCheckOut	18
3.9	CheckIn	19
3.10	GetListOfCheckedOutCSDBObjects	20
4	Data Types	21
4.1	S1StructuredIdentifier_Type	21
4.2	SearchResult_Type	22
4.3	CheckedOutData_Type	24
4.4	Faults	24

1 [bookmark: _Toc287856086][bookmark: _Toc304971621]Introduction
1.1 [bookmark: _Toc287856087][bookmark: _Toc304971622]Overview
This document defines the S1000D – SCORM Bridge Web Service Application Programming Interface (API). The Bridge API uses a set of non-proprietary Web Service specifications to define and transport data through the web service operations. This document also provides additional clarifications and recommendations to enhance interoperability through the use of the Bridge API. The specifications and resources used in the creation of the Bridge API include, but are not limited to:
· Simple Object Access Protocol (SOAP) Version 1.1
· Web Service Definition Language (WSDL) Version 1.1
· Extensible Markup Language (XML) Version 1.0 (Second Edition)
· Web Services Interoperability (WS-I) Basic Profile Version 1.0
1.2 [bookmark: _Toc287856088][bookmark: _Toc304971623]Purpose
The purpose of the S1000D-SCORM Bridge Web Service API is to define and describe an interoperable web service and set of web service operations through the use of WSDL. This specification defines a set of minimum requirements using SOAP to transport data and requests between systems (web service and a client). The main driver of this specification is to enable client applications and services to be developed and to communicate with each other using the SOAP transactions described by this specification. The specification is written in a manner to support multiple types of server-side services and client applications. However, one of the main business drivers and use cases is between a Common Source Database (CSDB) and a Learning Content Authoring Tool (LCAT). Section 1.3 provides more background and scoping of the business drivers and needs being addressed by this specification.
1.3 [bookmark: _Toc287856089][bookmark: _Toc304971624]Scope
This document provides a technical specification for a web service to electronically exchange data between two entities. The document focuses on defining an S1000D-SCORM Bridge API WSDL and a transport mechanism (i.e., SOAP). The scope of use for the web service is focused on transferring structured S1000D data and SCORM content between two entities.
The scope of this specification was designed and developed to support S1000D version 4.0. The specification may be usable as-is with past versions of the S1000D specification; however, there is no guarantee. Some operations defined by this specification may behave differently for past versions of the S1000D specification (e.g., based on attribute/element name that have changed over these versions or introduction of new attributes/elements).
The new S1000D 4.0 specification introduces functionalities that tighten the relationship between S1000D and SCORM. They provide opportunities to improve how technical data and associated learning content are life cycle-managed and produced in a CSDB environment. S1000D can help control information re-use between the technical documentation and training development disciplines as well as improve how training material is directly configured to the systems it supports.
Because of the new S1000D 4.0 functionality enabling learning content support, traditional SCORM-based learning content development tools may take advantage of having access to S1000D CSDB Management Systems that embed the ability to create SCORM content packages. These opportunities may be achieved using a common communication protocol between learning content development tools and S1000D databases, and between S1000D databases and applications that create SCORM conformant content packages. Improved harmonization between S1000D and SCORM is the basis for the S1000D-SCORM Bridge Application Programming Interface (API), known as “the Bridge”.
Product Life Cycle Support (PLCS) is an ISO standard that enables the creation and management through time of a controlled and authoritative set of product and support data. Test cases have demonstrated interoperability opportunities between S1000D and PLCS. With the emergence of the Bridge, the opportunity arises to improve integration of learning and human skills in a fast changing product support environment. Interoperability and cost of ownership reduction may now be enhanced by a controlled and automated provision of validated data for product support content development, usage and feedback.
As groups producing technical publications and training products operate within an integrated logistics environment, a CSDB must receive input from disparate production systems through a common data exchange. To achieve this vision, exchange packages must be defined, and the work must be founded on internationally agreed upon Integrated Logistic Support (ILS) standards, such as those provided by the PLCS standard (ISO 10303-239).
The Bridge specification focuses on data exchange between learning content authoring environments and CSDB Management Systems during the production of learning information to be used in SCORM-conformant training products. Figure 1 illustrates the domain and the areas of exchange that are being specified.

Figure 1: API Specification Focus Areas

During the editing phase, Learning Content Authoring Environments have a need to interface and exchange data with a CSDB. A common interoperable exchange mechanism (i.e., communication protocol and standard data) currently does not exist. The Bridge defines the communication protocol and the standardized information data sets that are exchanged across the communication protocol.
During the publish phase, content that resides within a CSDB is not interoperable with common on-line training environment in use today. Learning Management Systems (LMS) continue to evolve and support SCORM conforming content packages as the preferred data format for training delivery. The Bridge specifies functions that could be used in the transformational processes that must occur in order to meet the requirements of deploying and publishing CSDB data into a SCORM LMS environment.
1.4 [bookmark: _Toc287856090][bookmark: _Toc304971625]Conceptual Environment and Assumptions
The Bridge API was defined to support a conceptual environment where authoring tools were separate from the environments managing the S1000D data. However, nothing in particular about the specification prohibits the Bridge API from being used in cases where the authoring tool is tied to the CSDB Management System (or provided as part of the CSDB Management System solution). With the Bridge API there are some general assumptions that have been defined:
1. The implementation and deployment of the Bridge API provides a web service endpoint that is uniquely identifiable (e.g., URL).
2. This web service endpoint is provided or is known to the LCAT prior to any use of the web services defined. This endpoint is needed by the Bridge API in order to provide the connection from the LCAT to the CSDB Management System. How this endpoint is provided to the LCAT is outside the scope of this specification.
3. Appropriate accounts are configured with the CSDB Management System prior to using the web service. These accounts provide the distinguishing characteristics of users, roles and rights to perform appropriate actions. In some cases these user accounts, roles and rights may have to be coordinated with the LCAT. How these user accounts, roles and rights are determined are outside the scope of this specification.
4. Any project creation and/or setup procedures needed with CSDB Management Systems or LCATs have been configured ahead of time. These types of procedures are outside the scope of this specification.
1.5 [bookmark: _Toc304971626]Intended Audience
This document is intended for web service developers with a good working knowledge of web services architectures, SOAP and WSDL. The intent is to lay the foundation for these developers to be able to build services that match the requirements outlined and client applications to leverage those services.
1.6 [bookmark: _Toc287856091][bookmark: _Toc304971627]Organization of this Document
This S1000D – SCORM Bridge API document consists of the following sections:
· Section 1: Introduction: provides a high-level overview, scope and purpose for the document
· Section 2: S1000D – SCORM Bridge SOAP API Overview: provides an introduction to the S1000D – SCORM Bridge API.
· Section 3: S1000D – SCORM Bridge API WSDL: provides an overview of the purpose of the WSDL and outlines the requirements for constructing valid SOAP request and response messages. This section also defines the various methods and method syntax defined by the S1000D-SCORM Bridge API.
· Section 4: S1000D – SCORM Bridge API SOAP Data Types: describes all of the different data types used in conjunction with the WSDL.

2 [bookmark: _Toc287856092][bookmark: _Toc304971628]S1000D – SCORM Bridge SOAP API Overview
The goal of the Bridge is to develop a common, interoperable communication protocol and data exchange mechanism that could be implemented by a variety of applications. The API is web service-based and defines a set of operations, data requirements, message format constraints and behaviors associated with each operation. The API has a defined WSDL that enables multiple CSDB Vendors to build a set of common, standardized web service operations that can be utilized by a variety of different Learning Content Authoring Environments. Figure 2 illustrates a conceptual view of the Bridge.
The WSDL enables multiple implementations (CSDB Management System 1, CSDB Management System 2 and CSDB Management System 3) to define a set of standard operations that can be invoked using commonly accepted SOAP protocols by any application (LCAT 1 – 4) that adheres to the message descriptions defined in the WSDL. This type of implementation enables a single learning content authoring tool (e.g., LCAT 1 in Figure 2) to interface with multiple CSDB implementations without the need to define or utilize a different set of communication protocols and data exchange requirements.
The Bridge implementation enables CSDB Management Systems to abstract the interface of the operations from the actual implementation details. In this case the interface becomes well known and established and the implementation details can be proprietarily developed.

Figure 2: The Bridge Conceptual Model

2.1 [bookmark: _Toc287856093][bookmark: _Toc304971629]Services Architecture
Like traditional web services, the S1000D-SCORM Bridge SOAP services architecture is a combination of client-side and service-side software, hardware, schemas and other implementation specific services. This service architecture can be depicted as in the following figure.

Figure 2.1.a: S1000D-SCORM Bridge Conceptual Services Architecture
3 [bookmark: _Toc287856094][bookmark: _Toc304971630]Web Service Operation Definitions
3.1 [bookmark: _Toc287856095][bookmark: _Toc304971631]Connect
The Connect operation associates a learning content authoring tool or application with a CSDB Management System. The Connect operation enables the CSDB Management System to establish any pertinent initiation procedures or setup in order to accept other web service calls from a learning content authoring tool or application.
The Connect operation must create a session identifier that is returned to the application that invoked the operation. The session identifier will be needed for other operations in order for the CSDB Management System to verify and authenticate the operation. The syntax and format of the session identifier should be defined by the CSDB Management System and must be unique enough for that CSDB Management System to recognize multiple web-service requests from multiple authoring environments or applications.
The ability to use a CSDB Management System provided session identifier to reconnect to a CSDB Management System is not supported by this specification. If a LCAT would like to establish a new connection with the CSDB Management System or an older session has completed, it should do so by issuing a new Connect request. This request will return a new session identifier.
From time to time, CSDB Management Systems may wish to clean up and maintain session information potentially being stored to help manage the different sessions. This specification does not provide any requirements for management, maintenance or clean up of sessions. How these types of activities are handled by the CSDB Management System are outside the scope of this specification. If supported, it is recommended that information should be provided in some form to users of the CSDB Management Systems in order to make them aware of this maintenance policy.
[bookmark: _Toc287856096]Input Parameters:
· UserName (xs:string): The user name associated with the end user invoking the operation through a learning content authoring tool or application. It is assumed that the end user has already established a user name with the CSDB Management System.
· Password (xs:string): The password associated with the end user invoking the operation through a learning content authoring tool or application. It is assumed that the end user has already established a password with the CSDB Management System.
· Identifier (xs:string): The identifier of the CSDB Management System which the end user wishes to connect to. How the Identifier has been acquired for this operation is outside the scope of this specification. It is assumed that the Identifier is provided to the LCAT at some point.
[bookmark: _Toc287856097]Output Parameters:
· SessionID (xs:string): The session identifier for the connecting end user. The session identifier is important because it enables the CSDB Management System to recognize information about the incoming web-service call (e.g., source of the call and rights that can be performed). The session identifier is needed for other web-service operations and it is the responsibility of the end user to protect and manage the session identifier. The session identifier must be unique to the end user of the CSDB Management System. The CSDB Management System may be maintaining multiple session identifiers per given learning content authoring tool or application. The session identifier is a means for the CSDB Management System to track the different users of the system and what rights/roles they have access to.
· NOTE: Since some of the operations defined in the specification can be invoked across sessions, the CSDB Management System may need to track session information, user identification/credentials and user rights/roles across sessions. For example, a user may check a file out (CheckOut) in one session, but may check it in (CheckIn) in another. In these cases the CSDB Management System will have to track the user across these sessions in order to verify that the user can check in the file in a new session. If the CSDB Management System is only tracking this information during a single session, then an erroneous fault may be detected. By tracking operations across sessions, the CSDB Management System will be able to support these scenarios.
[bookmark: _Toc287856098]Error Conditions:
· INVALID_USER_ID
· INVALID_PASSWORD
· CSDB_MGMT_SYSTEM_NOT_RECOGNIZED
3.2 [bookmark: _Toc304971632]Disconnect
The Disconnect operation terminates an association of a learning content authoring tool or application with a CSDB Management System. The Disconnect operation enables the CSDB Management Systems to service any remaining actions associated with closing out a connection with a given application (e.g., perform any environment clean up responsibilities).
During the disconnecting process, the session identifier for the end user is disabled. The CSDB Management System will not process any more requests with that session identifier.
[bookmark: _Toc287856100]Input Parameters:
· SessionID (xs:string): The session identifier for the connected end user.
[bookmark: _Toc287856101]Output Parameters:
· None
[bookmark: _Toc287856102]Error Conditions:
· INVALID_SESSION_IDENTIFIER
3.3 [bookmark: _Toc304971633]Search
The Search operation allows an authoring tool or application to search for a variety of S1000D data within a CSDB Management System. The Criteria input parameter is used by CSDB Management Systems to determine the criteria in which to perform the search. The Criteria input parameter takes the form of a simplified XPath expression. This expression can reference any valid S1000D XML element or attribute. This XPath expression will then be evaluated by the CSDB Management System and a set of search results matching the request will be returned. If the XPath expression is not valid, the CSDB Management System will indicate an error through a SOAP Fault (see Error Conditions).
Due to the nature of a CSDB Management Systems ability to manage an exorbitant number of CSDB Objects, there will be cases where Search() operations will cause numerous hits and/or cause processing delays or errors within the CSDB Management System. In order to assist with different processing challenges, the Search() operation supports the ability to request a certain number of results to be returned. The client applications can use this to narrow down the number of results returned (refer to the RequestedNumberOfResults attribute for more requirements and behavior details).
Using this XPath syntax, there are several types of searches that could be performed. These types of searches often combine Boolean operators.

Table: Examples of XPath Searches
	Type of Search
	Description
	Example

	General Text Search
	This is a search that uses a general string and is used to search the entire CSDB Object field set for an attribute that contains the <general_search_string> value.
	//*/@*=’<general_search_string>’
//*/@*=’007’
//*[contains(@*,’007’)] – uses the contains() function
Show me anything that contains an attribute value of 007.

	General Text Search
	This is a search that uses a general string and is used to search the entire CSDB Object field set for an element that contains the <general_search_string> value.
	//*[.=’<general_search_string>’
//*[.='wheel']
//*[contains(.,’wheel’)] – uses the contains() function
Show me anything that contains an element with a value of wheel.

	Single Term
	This is a search using a single term. This type of search is used to return anything that has the term provided in the specified field.
	//dmAddress/dmIdent/dmCode[@infoCode=’720’]
Show me anything that has an information code of 720.

	General Listing
	This type of search can be used to list out a set of specific types of CSDB Objects. The search can also be supplemented with use of Boolean operators to narrow search results down to a manageable list.
	//dmlCode
Show me a listing of Data Module Requirement List objects stored in the CSDB Management System.
//scormContentPackageCode
Show me a listing of SCORM Content Package Module objects stored in the CSDB Management System.

	Boolean AND
	This is a search using the Boolean operator and with two single terms. This type of search is used to return anything that has both single terms in any field (XML element or attribute).
	//dmAddress/dmIdent/dmCode[@infoCode=’720’] and //dmAddress/dmIdent/dmCode[@learnCode=’T12’]
Show me anything that has the infoCode of 720 and a learnCode of T12.
//dmAddress/dmIdent/dmCode[@modelIdentCode=’S1000DBIKE’] and //dmAddress/dmIdent/dmCode[@systemCode=’DA1’] and //*[not(//dmCode[@learnCode])]
Show me all Technical Data Modules (no learning Data Modules) that have a Model Ident Code of S1000DBIKE and a System Code of DA1.

	Boolean OR
	This is a search using the Boolean operator or with two single terms. This type of search is used to return anything that has either one of the single terms in any fields specified (XML element or attribute).
	//dmAddress/dmIdent/dmCode[@infoCode=’720’] or //dmAddress/dmIdent/dmCode[@learnCode=’T12’]
Show me anything that has the infoCode of 720 or a learnCode of T12.

	Not Equivalent
	This is a general text search looking for CSDB Objects that do not contain a certain value.
	 //dmAddress/dmIdent/dmCode[@learnCode!=’T12’])
Show me anything that does not have a learnCode of T12.

	Grouping
	Grouping allows for complex criteria to be built using supported Boolean operators (or, and).

	(//dmAddress/dmIdent/dmCode[@infoCode=’720’] or //dmAddress/dmIdent/dmCode[@learnCode=’T12’]) and //dmAddress/dmIdent/language[@countryIsoCode=’US’]
Show me anything thing that has an infoCode of 720 or a learnCode of T12 and a country code of US.

[bookmark: _Toc287856108]Input Parameters:
· Criteria (xs:string): The specific search criteria.
· RequestedNumberOfResults (xs:integer): This is an optional parameter that provides a requested number of results that the client application would like to see. This integer number should be used by the CSDB Management System as an indicator for the number of search results returned.
· SessionID (xs:string): The session identifier for the connected end user.
[bookmark: _Toc287856109]Output Parameters:
· SearchResults (SearchResult_Type): The Search Results matching the input search criteria (Criteria).
[bookmark: _Toc287856110]Error Conditions:
· INVALID_SESSION_IDENTIFIER
· SESSION_NOT_ACTIVE
· INVALID_SEARCH_CRITERIA
· OPERATION_NOT_PERMITTED
· PROCESSING_ERROR_DURING_SEARCH_REQUEST
3.4 [bookmark: _Toc304971634]GetCSDBObject
The GetCSDBObject operation returns a read only version of the CSDB Object identified. If the identified object (S1StructuredIdentifer) is attempted to be checked in (by the CheckIn method) , then the CSDB Management System should not permit the CSDB Object to be checked in and the system should indicate that an error condition has been encountered (See CheckIn Error Conditions). The CSDB Object identified is returned as an attachment through the SOAP Response. The user of the object should not permit an author to make any changes to the CSDB Object. By retrieving the CSDB Object, a private viewing copy of the object is created for the client application that made the service call.
[bookmark: _Toc287856120]Input Parameters:
· S1StructuredIdentifier (S1StructuredIdentifier_Type): The S1000D structured identifier that represents the CSDB Object wishing to be retrieved (a read-only copy).
· SessionID (xs:string): The session identifier for the connected end user.
[bookmark: _Toc287856121]Output Parameters:
· CSDBObject (Attachment_Type): This parameter represents the read-only version of the CSDB Object that is being retrieved. The object being retrieved can be an object of different formats (e.g., XML, PDF, PNG). The Attachment_Type contains an ObjectMIMEType indicator to assist in the understanding of the object being returned.
[bookmark: _Toc287856122]Error Conditions:
· INVALID_STRUCTURED_IDENTIFIER
· UNRECOGNIZED_S1_STRUCTURED_IDENTIFIER
· INVALID_SESSION_ID
· SESSION_NOT_ACTIVE
· OPERATION_NOT_PERMITTED
3.5 [bookmark: _Toc304971635]AddCSDBObject
The AddCSDBObject operation indicates to the CSDB Management System that the given CSDB Object should be persisted within the CSDB. Once the object is persisted within the CSDB Management System, the CSDB Object will become available for other operations (e.g., check out, edit and check in). This method is defined to support adding one CSDB Object into the CSDB Management System at a time.
Although not required by this specification, the CSDB Management System may provide support for validating the CSDB Object being added in accordance with requirements of the S1000D Specification (e.g., schema validation). The CSDB Management System can use the schemaLocation attribute to determine the schemas to be used for validation purposes. The schemaLocation attribute is required to be present in the S1000D CSDB Objects.
This operation can also be used to add media files to the CSDB Management System; however, in these cases there are no S1000D XML constructs to validate. In these cases, the CSDB Management System could validate the Information Control Number (ICN) according to the S1000D Specification (refer to Section 4.4). If a CSDB Object has references to ICNs, the CSDB Management System should not attempt to validate the reference objects, it should validate only the current CSDB Object XML Instance it is processing. Some CSDB Management Systems may not accept a new CSDB Object instance unless the media files referenced (e.g., figures) are already existing in the CSDB Management System. This specification recommends that all reference media (i.e., through an ICN reference) exist within a CSDB Management System prior to adding a new CSDB Object.
Prior to issuing the AddCSDBObject operation, client applications could provide validation services to ensure that the data being persisted in the CSDB Management System follows the rules and requirements of S1000D. In these cases the client applications could use the S1000D Schemas and any identified Business Rules Exchange (BREX) data modules associated with the object.
The CSDB Management System is required to set the issueNumber to “000” and the inWork number to “01” for CSBD Objects that have S1000D XML with these values (e.g., Data Modules). In the case where the object being added is an ICN, the CSDB Management System has no data to update.
The AddCSDBObject operation passes the CSDB Object to the Web-service by using SOAP Attachments.
[bookmark: _Toc287856128]Input Parameters:
· S1StructuredIdentifier (S1StructuredIdentifier_Type): The S1000D structured identifier that represents the CSDB Object to add to the CSDB Management System.
· CSDBObject (Attachment_Type): The CSDB Object to be added to the CSDB Management System.
· SessionID (xs:string): The Session Identifier used for validating that authentication has been performed. The session id may also be used for verifying that the authenticated user has permission to perform the method.
[bookmark: _Toc287856129]Output Parameters:
· None (if there are errors during the processing of the operation, error conditions will arise)
[bookmark: _Toc287856130]Error Conditions:
· INVALID_STRUCTURED_IDENTIFIER
· INVALID_SESSION_IDENTIFIER
· CSDB_OBJECT_STRUCTURED_ID_MISMATCH
· CSDB_OBJECT_INVALID_ACCORDING_TO_SCHEMA
· CSDB_OBJECT_INVALID_ACCORDING_TO_DEFAULT_BREX
· CSDB_OBJECT_INVALID_ACCORDING_TO_PROJECT_BREX
· SESSION_NOT_ACTIVE
· OPERATION_NOT_PERMITTED
· CSDB_OBJECT_ALREADY_EXISTS
3.6 [bookmark: _Toc304971636]ApproveCSDBObject
The ApproveCSDBObject operation indicates to the CSDB Management System that the current CSDB Object referenced is approved for release. At this point all project/organization QA conditions and processes have been met (e.g., project defined use of quality assurance element). During this process, the issueNumber needs to be incremented by 1.
The S1000D specification defines the behavior for information management in the form of version control of data modules (Refer to Chapter 4.7 Information Management – Version control of data modules).
An issue number is set to “000” when a data module is initially created. The issue number will remain at “000” until the data module is approved for release. Once approved for release, the issue number is incremented by 1 and is set to “001”. For every subsequent approval for release, the issue number is incremented by 1. The issue number works in conjunction with the inWork number in the sense that the inWork number is incremented every time a data module is changed within an issue. Once a new issue of the data module is made the inWork number is set back to “00”. The CSDB Management System is responsible for understanding these rules and is required to change the issueNumber and inWork number when appropriate.
	Step
	Attribute Value
	Comment

	New data module, first in work version
	inWork = “01”
issueNumber=”000”
	First instance of a CSDB Object within a CSDB Management System

	New data module, second in work version
	inWork=”02”
issueNumber=”000”
	Change has been made to the CSDB Object

	New data module, in work version “NN”
	inWork=”NN”
issueNumber=”000”
	“NN”th change to the CSDB Object

	First issue of data module
	inWork=”00”
issueNumber=”001”
	Once a CSDB Object is approved for release, the inWork number is set to “00” and the issueNumber is set to “001” indicating the first issue or release of the CSDB Object

	First issue of data module, first in work
	inWork=”01”
issueNumber=”001”
	When the newly issued object is checked out and changed, the CSDB Management System is required to increment the inWork number by 1 upon check in

When an ApproveCSDBObject method is invoked, the CSDB Management System shall adhere to certain requirements. There may be rules, policies or workflow where CSDB Objects need to be approved through some sort of project/organization quality assurance (QA) processes. These may include certain QA conditions being met, verification process (first verified, second verified elements being set, etc.) The requirements are as follows:
1. If the CSDB Object has not been approved (i.e., project/organization defined QA procedures), then the method should make no change and the error (CSDB_OBJECT_NOT_APPROVED) shall be reported.
2. If the CSDB Object has been approved, then the CSDB Management System shall
a. increment the issueNumber by 1
b. set the inWork number to 00
[bookmark: _Toc287856132]Input Parameters:
· S1StructuredIdentifier (S1StructuredIdentifier_Type): The S1000D structured identifier that represents the CSDB Object to approve. The S1StructuredIdentifer shall be represented as valid S1000D Uniform Resource Name (URN) syntax (e.g., URN:S1000D:DMC-S1000D-A-07-05-0000-00A-000A-A_I-001_W-00_L-SX_C-US). For more information, refer to S1000D Specification: Chapter 7.2.1.4 IETP – Resource Resolution.
· SessionID (xs:string): The session identifier for the connected end user.
[bookmark: _Toc287856133]Output Parameters:
· IssueNumber (xs:string): This parameter represents the newly incremented issue number. This value is returned to the application invoking this method. What the invoking application does with this number is outside the scope of this specification.
[bookmark: _Toc287856134]Error Conditions:
· INVALID_STRUCTURED_IDENTIFIER
· INVALID_SESSION_IDENTIFIER
· SESSION_NOT_ACTIVE
· OPERATION_NOT_PERMITTED
3.7 [bookmark: _Toc304971637]CheckOut
The CheckOut operation signifies to a CSDB Management System that a learning content authoring tool or application would like to reserve a CSDB object. The CheckOut operation requires the CSDB Management 	System to perform appropriate CSDB Management System specific checkout procedures. Minimally, the CSDB Object is required to be locked (or reserved) and not permitted to be edited by any other user or entity until the CSDB Object’s lock is released. By checking out the CSDB Object, a private working copy of the object is created for the client application that made the service call.

The S1StructuredIdentifier can be used in several ways during a CheckOut operation:
1. If the client would like the latest version of the CSDB Object, the client application should not include any of the following issue information: inWork, issueNumber. When these values are left out of the S1StructureIdentifier, the CSDB Management System is required to return the latest version of that CSDBObject.
2. If the client provides the inWork and issueNumber, then the CSDB Management System has two options:
a. Check out and return the specific identified CSDB Object. This implies that the CSDB Management System supports some form of branching/merging feature to align the changed file (e.g., specifically if the identified CSDB Object is not the current version). NOTE: A branching/merging feature is not required to be supported by this specification.
b. Determine if the inWork and issueNumber provided represents the latest version. If so, then the CSDB Object can be returned. If the inWork and issueNumber does not identify the latest version, then the CSDB Management System can issue an appropriate fault (INVALID_STRUCTURED_IDENTIFIER) to indicate the error along with a description of the error.
[bookmark: _Toc287856136]Input Parameters:
· S1StructuredIdentifier (S1StructuredIdentifier_Type): The S1000D structured identifier that represents the CSDB Object to check out. The S1StructuredIdentifer shall be represented as valid S1000D URN syntax (e.g., URN:S1000D:DMC-S1000D-A-07-05-0000-00A-000A-A_I-001_W-00_L-SX_C-US.
· SessionID (xs:string): The session identifier for the connected end user.
[bookmark: _Toc287856137]Output Parameters:
· CSDBObject (Attachment_Type): This parameter represents the CSDB Object that is being checked out.
[bookmark: _Toc287856138]Error Conditions:
· INVALID_STRUCTURED_IDENTIFIER
· INVALID_SESSION_IDENTIFIER
· SESSION_NOT_ACTIVE
· OPERATION_NOT_PERMITTED
· CSDB_OBJECT_ALREADY_CHECKED_OUT
· CHECKED_OUT_OBJECT_LIMIT_REACHED
3.8 [bookmark: _Toc304971638]UndoCheckOut
The UndoCheckOut operation enables an authoring tool or application to reverses the effect of a CheckOut operation call and remove the private working copy of the checked-out CSDB Object. During the processing of an UndoCheckOut, the CSDB Management System should ignore any changes that may have been made to the CSDB Object. This also requires the CSDB Management System to not adjust the inWork number. Since the UndoCheckOut operation was called, the authoring tool or application has stated its intent to ignore all work that was done; therefore, there is no need to create a new in work version.
This operation can only be performed by a user who has the rights to perform the operation:
· The original user who checked out the file, or
· A systems administrator
NOTE: Because an UndoCheckOut can be performed across sessions, the CSDB Management System must design a way to track who has checked out what CDSBObjects. How this is implemented is outside the scope of this specification.
[bookmark: _Toc287856140]Input Parameters:
· S1StructuredIdentifier (S1StructuredIdentifier_Type): The S1000D structured identifier that represents the CSDB Object to perform the UndoCheckOut operation on. The S1StructuredIdentifer shall be represented as valid S1000D URN syntax (e.g., URN:S1000D:DMC-S1000D-A-07-05-0000-00A-000A-A_I-001_W-00_L-SX_C-US
· SessionID (xs:string): The session identifier for the connected end user.
[bookmark: _Toc287856141]Output Parameters:
· None
[bookmark: _Toc287856142]Error Conditions:
· INVALID_STRUCTURED_IDENTIFIER
· INVALID_SESSION_IDENTIFIER
· SESSION_NOT_ACTIVE
· OPERATION_NOT_PERMITTED
· CSDB_OBJECT_NOT_CHECKED_OUT
3.9 [bookmark: _Toc304971639]CheckIn
The CheckIn operation allows an authoring tool or application to make the private working copy of the CSDB Object the current version of the CSDB Object in the CSDB Management System.
The CheckIn operation signifies to a CSDB Management System that a learning content authoring tool or application would like to persist changes made to the CSDB Object identified and unlock the object for future operations. The CheckIn operation requires the CSDB Management System to perform appropriate CSDB Management System defined check in procedures. Minimally, it is required that the CSDB Management System performs the following:
· increases the inWork number by 1. The inWork number is used to track the different drafts of the CSDB Object. The inWork number is part of the data module identification information found within the Identification and status section of a data module. If the inWork number was changed during the authoring process, the value will be ignored and set according to this rule by the CSDB Management System. This will avoid any discrepancies with understanding the requirements of the inWork number by authors.
· persists the CSDB Object identified through the input parameter
· unlocks the CSDB Object identified through the input parameter
Although not required by this specification, the CSDB Management System could validate the CSDB Object in accordance with requirements of the S1000D Specification (e.g., schema validation). The CSDB Management System can use the schemaLocation attribute to determine the schemas to be used for validation purposes. The schemaLocation attribute is required to be present in the S1000D CSDB Objects. Prior to issuing the CheckIn operation, applications could possibly reduce validation errors by using the S1000D Schemas and any identified Business Rules Exchange (BREX) data modules associated with the object.
This operation can only be performed by a user who has the rights to perform the operation:
· The original user who checked out the file, or
· A systems administrator
NOTE: Because a CheckIn can be performed across sessions, the CSDB Management System must design a way to track who has checked out what CDSBObjects. How this is implemented is outside the scope of this specification.
[bookmark: _Toc287856144]Input Parameters:
· S1StructuredIdentifier (S1StructuredIdentifier_Type): The S1000D structured identifier that represents the CSDB Object to check in. The S1StructuredIdentifer shall be represented as valid S1000D URN syntax (e.g., URN:S1000D:DMC-S1000D-A-07-05-0000-00A-000A-A_I-001_W-00_L-SX_C-US).
· CSDBObject (Attachment_Type): This parameter represents the CSDB Object being checked in.
· SessionID (xs:string): The session identifier for the connected end user.
[bookmark: _Toc287856145]Output Parameters:
· NewInWorkNumber (xsd:string): This output parameter represents the final number used by the CSDB Management System for the inWork number. If an InWork number is returned, the operation was successful.
[bookmark: _Toc287856146]Error Conditions:
· INVALID_STRUCTURED_IDENTFIER
· INVALID_SESSION_IDENTIFIER
· SESSION_NOT_ACTIVE
· OPERATION_NOT_PERMITTED
· CSDB_OBJECT_NOT_CHECKED_OUT
· CSDB_OBJECT_NOT_VALID_TO_S1000D
3.10 [bookmark: _Toc304971640]GetListOfCheckedOutCSDBObjects
The GetListOfCheckedOutCSDBObjects operation enables a user or an authoring environment to understand which CSDB Objects the user has checked out. The CSDB Management System can determine the user by the Session Identifier provided. CSDB Management Systems should keep in mind that users may have checked out CSDB Objects in previous sessions. This implies that the CSDB Management Systems will need to maintain some sort of tracking of users across sessions.
[bookmark: _Toc287856148]Input Parameters:
· SessionID (xs:string): The session identifier for the connected end user. The session identifier can be used to determine the user identifier for the request.
[bookmark: _Toc287856149]Output Parameters:
· CheckedOutData (CheckedOutData_Type): A list of data about the CSDB Object(s) that are checked out by a given user identifier (associated to the Session ID).
[bookmark: _Toc287856150]Error Conditions:
· INVALID_SESSION_IDENTIFIER
· SESSION_NOT_ACTIVE
4 [bookmark: _Toc287856151][bookmark: _Toc304971641]
Data Types
This section defines a set of data types that are used by various API operations. These data types are common across several of the operations defined by the specification.
4.1 [bookmark: _CSDBIdentification_Data][bookmark: _Toc287856152][bookmark: _Toc304971642]S1StructuredIdentifier_Type
The S1StructuredIdentifier_Type represents the unique name and identifier for the CSDB Objects. The S1StructuredIdentifier_Type is specified as a URN. Within S1000D, the use of URNs for uniquely naming and identifying CSDB Objects enables a means to provide a location independent identification structure (refer to Chapter 7.4.1.2 IETP – Resource resolution in the S1000D specification for more details).
The format of an S1StructuredIdentifier_Type follows the rules and requirements for URNs:
URN:NID:NSS
URN: “URN” is a required reserved prefix
NID: the namespace identifier. The reserved namespace identifier is “S1000D”.
NSS: The namespace specific string. S1000D also has a set of registered namespace identifiers that are reserved as sub namespaces for use in identifying the different information objects within S1000D. These sub namespaces should be used in the S1StructuredIdentifier as a prefix for the NSS followed by its corresponding S1000D syntax:
· DMC – Data Module Code
· DME – Data Module Code Extended
· PMC – Publication Module Code
· PME - Publication Module Code Extended
· SMC – SCORM Content Package Code
· SME - SCORM Content Package Code Extended
· CSN – Catalog Sequence Number
· ICN – Illustration Control Number
· COM – Comment Code
· DDN – Data Dispatch Note Code
· DML – Data Module List Code
This leads to the following required syntax for the S1StucturedIdentifier, based on information object being identified:
· URN:S1000D:DMC-{Code in DMC syntax}
· URN:S1000D:DME-{Code in DME syntax}
· URN:S1000D:PMC-{Code in PMC syntax}
· URN:S1000D:PME-{Code in PME syntax}
· URN:S1000D:SMC-{Code in SMC syntax}
· URN:S1000D:SME-{Code in SME syntax}
· URN:S1000D:CSN-{Code in CSN syntax}
· URN:S1000D:ICN-{Code in ICN syntax}
· URN:S1000D:COM-{Code in COM syntax}
· URN:S1000D:DDN-{Code in DDN syntax}
· URN:S1000D:DML-{Code in DML syntax}
4.2 [bookmark: _Return_Data][bookmark: _SearchResult][bookmark: _Toc287856154][bookmark: _Toc304971643]SearchResult_Type
The SearchResult_Type contains information returned from a search operation in the specification. There is a different set of search results information that is returned based on the type of S1000D CSDB Object. The following list represents what types of data could be returned:
· S1StructuredIdentifier (S1StructuredIdentifier_Type): The S1000D structured identifier that represents the CSDB Object. The S1StructuredIdentifier is a required return value.
· Language (xsd:string): The S1000D structured identifier that represents the CSDB Object.
· IssueNumber (xsd:string): The current issue number of the requested object
· InWork (xsd:string): The current in work number of the requested object. The InWork is an optional return value.
· TechName (xsd:string): The tech name of the requested object. The TechName is an optional return value.
· InfoName (xsd:string): The info name of the requested object. The InfoName is an optional return value
· SCORMContentPackageTitle (xsd:string): The SCORM Content Package title.
· PMTitle (xsd:string): The Publication Module title.
· CheckOutBy (xsd:string): The current user identifier that has the requested object checked out.
· IsReadable (xsd:boolean): A Boolean indicator of whether or not this CSDB Object is read only to the user.
· IsWriteable (xsd:boolean): The Boolean indicator of whether or not this CSDB Object can be updated by the user (writeable).

The following table describes the requirements and more information related to the SearchResult_Type based on the CSDB Object identified by the search criteria.

	S1000D CSDB Object
	

	Data Module
	· S1StructuredIdentier – The data module code (in URN format)
· Language – made up of the ISO Country Code (countryIsoCode attribute of the <language> element) and ISO Language Code (languageIsoCode attribute of the <language> element). The syntax shall be “countryIsoCode” – “languageIsoCode”. Example: US-sx
· Issue Number – the current approved issue of the data module (issueNumber attribute of the <issueInfo> element)
· In Work Number – the current in work number of the data module (inWork attribute of the <issueInfo> element)
· Tech Name – the name of the hardware of function of the S1000D CSDB Object (<techName> element value)
· Info Name – short description of the information code for the S1000D CSDB Object (<infoName> element value). The <infoName> element is optional. If it is not provided the search results will not contain the information name
· Check Out By – the user identification for the user who has the CSDB Object currently checked out
· Is Readable – a true or false value indicating whether or not the user can read/view the data module identified
· Is Writeable – a true or false value indicating whether or not the user can write/modify the data module identified

	Publication Module
	· S1StructuredIdentier – The publication module code (in URN format)
· Language – made up of the ISO Country Code (countryIsoCode attribute of the <language> element) and ISO Language Code (languageIsoCode attribute of the <language> element). The syntax shall be “countryIsoCode” – “languageIsoCode”. Example: US-sx
· IssueNumber – the current approved issue of the data module (issueNumber attribute of the <issueInfo> element)
· InWork – the current in work number of the data module (inWork attribute of the <issueInfo> element)
· PMTitle – the title for the Publication Module (<pmTitle>)
· CheckOutBy – the user identification for the user who has the CSDB Object currently checked out
· IsReadable – a true or false value indicating whether or not the user can read/view the data module identified
· IsWriteable – a true or false value indicating whether or not the user can write/modify the data module identified

	SCORM Content Package Module
	· S1StructuredIdentier – The SCORM Content Package module code (in URN format)
· Language – made up of the ISO Country Code (countryIsoCode attribute of the <language> element) and ISO Language Code (languageIsoCode attribute of the <language> element). The syntax shall be “countryIsoCode” – “languageIsoCode”. Example: US-sx
· IssueNumber – the current approved issue of the data module (issueNumber attribute of the <issueInfo> element)
· InWork – the current in work number of the data module (inWork attribute of the <issueInfo> element)
· SCORMContentPackageTitle – the title for the SCORM Content Package Module (<scormContentPackageTitle>)
· CheckOutBy – the user identification for the user who has the CSDB Object currently checked out
· IsReadable – a true or false value indicating whether or not the user can read/view the data module identified
· IsWriteable – a true or false value indicating whether or not the user can write/modify the data module identified

	Information Control Number (ICN)
	· S1StructuredIdentier – The Information Control Number (in URN format)
· CheckOutBy – the user identification for the user who has the CSDB Object currently checked out
· IsReadable – a true or false value indicating whether or not the user can read/view the data module identified
· IsWriteable – a true or false value indicating whether or not the user can write/modify the data module identified

4.3 [bookmark: _Toc287856155][bookmark: _Toc304971644] CheckedOutData_Type
A CheckedOutData_Type contains information that would be returned when a listing of CSDB Objects that are currently checked out is requested by a client application. The data returned contains the following information:
· S1StructuredIdentifier (S1StructuredIdentifier_Type): The S1000D structured identifier that represents the CSDB Object. The S1StructuredIdentifier is a required return value.
· IssueNumber (xsd:string): The current issue number of the requested object. The IssueNumber is an optional return value.
· InWork (xsd:string): The current in work number of the requested object. The InWork is an optional return value.
· TechName (xsd:string): The tech name of the requested object. The TechName is an optional return value.
· InfoName (xsd:string): The info name of the requested object. The InfoName is an optional return value.
· CheckedOutBy (xsd:string): The current user identifier that has the requested object checked out. The CheckOutBy is a required return value.
· [bookmark: _Toc287856156]ObjectMIMEType (xsd:string): The Multipurpose Internet Mail Extensions (MIME) Type for the CSDB Object being added.
4.4 [bookmark: _Toc304971645]Faults
The S1000D-SCORM Bridge API defines a set of faults that could be returned by implementations of the API. A fault contains information that would be returned when an error condition is encountered during the processing of operations defined in this specification. A fault contains the following information:
· ReturnCode: An error condition token, representing the type error condition encountered. There is a Fault Type declared for each operation. Each Fault Type contains the possible set of error conditions that could be encountered.
· ReturnCodeDescription: A short description of the error condition. The CSDB Management System can provide as much detail as needed to describe the error condition and possibly any remedies.

The follow table defines the set of error conditions that may be encountered using the set of web-service operations defined in this specification.
Table 3.6a: Error Conditions and Descriptions
	Error Condition
	Error Description

	INVALID_USER_ID
	The user identifier is not recognized by the CSDB Management System.

	INVALID_PASSWORD
	The password is not valid for the given user identifier being managed by the CSDB Management System.

	CSDB_MGMT_SYSTEM_NOT_RECOGNIZED
	The identifier for the CSDB Management System is invalid or not recognized by the Service Provider (endpoint).

	INVALID_STRUCTURED_IDENTIFIER
	The S1000D structured identifier provided is invalid or not recognized by the CSDB Management System.

	INVALID_SESSION_IDENTIFIER
	The Session Identifier is not recognized or valid within that CSDB Management System.

	NO_DATA_PROVIDERS_FOUND
	The CSDB Management System could not identify any CSDBs (data providers) to return to the client application.

	SESSION_NOT_ACTIVE
	The Session is no longer active. The session enters the inactive state when a Disconnect operation has been called. No other operations can be invoked unless the session is in an active state (Connect operation is invoked).

	INVALID_SEARCH_CRITERIA
	The criterion provided is invalid and not supported by the CSDB Management System.

	OPERATION_NOT_PERMITTED
	The operation being performed is not permitted by the user.

	INVALID_CONTENT_OBJECT_TYPE
	The content object type is not recognized by the CSDB Management System.

	INVALID_INFO_CONTROL_NUM
	The S1000D Information Control Number (ICN) provided is invalid or not recognized by the CSDB Management System.

	CSDB_OBJECT_ALREADY_CHECKED_OUT
	The CSDB Object that is being attempted to be checked out is already locked and checked out by another user or entity.

	CHECKED_OUT_OBJECT_LIMIT_REACHED
	The number of objects checked out by the user has met its CSDB Management System defined limit. No more checkouts are permitted.

	CSDB_OBJECT_NOT_CHECKED_OUT
	The CSDB Object being attempted to be checked in is not checked out.

	CSDB_OBJECT_IS_NOT_VALID_TO_S1000D
	The CSDB Object is not valid according to S1000D or its schemas.

	CSDB_OBJECT_ALREADY_EXISTS
	The CSDB Object being added to the CSDB Management Systems already exists. The S1StructuredIdentifier used in the operation is already in the CSDB Management System.

2 | Page
Version 1.0 – 30 Sep 2011
image1.jpeg

image2.png

image3.png

image4.emf
CSDB Management

System 1

S1000D/SCORM

BridgeAPI

Implementation

CSDB Management

System 2

CSDB Management

System 3

LCAT 1LCAT 2

LCAT 3LCAT 4

Learning Content Authoring Tools (LCAT)

(S1000D Editors, Learning Content Authoring Environments, etc)

S1000D/SCORM

BridgeAPI

Implementation

S1000D/SCORM

BridgeAPI

Implementation

S1000D Data &

Configuration

Data

S1000D Data &

Configuration

Data

S1000D Data &

Configuration

Data

Interoperable Communication and Data Exchange

oleObject1.bin
S1000D/SCORM BridgeAPI Implementation

CSDB Management System 1

S1000D/SCORM BridgeAPI Implementation

image5.emf
SOAP API Client (e.g.,

Learning Content

Authoring Tool)

CSDB Core Services

(Transaction Processing,

Business Logic, etc.)

Content & Data

(proprietary format)

S

1

0

0

0

D

/

S

C

O

R

M

A

P

I

S

e

r

v

e

r

s

(

E

n

d

p

o

i

n

t

s

)

SOAP Response over HTTPS

Signed SOAP Request over HTTPS

oleObject2.bin
SOAP API Client (e.g., Learning Content Authoring Tool)

SOAP Response over HTTPS

CSDB Core Services
(Transaction Processing, Business Logic, etc.)

S1000D/SCORM API Servers (Endpoints)

