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Introduction 
Procedural skills are an increasingly pervasive requirement in today’s world, in areas 
ranging from IT system administration to complex data analyses, from automotive 
equipment repair to intricate medical diagnosis. The acquisition of procedural skills 
requires learning by doing—learners gain knowledge by trying to solve challenge 
problems, exploring the usage and limitations of tools and techniques, getting feedback 
on oversights and mistakes, and requesting assistance in the face of impasses and 
confusion. Intelligent virtual environments (VEs) hold promise for improving learner-
directed instruction in these contexts. Such systems trace the progress of learners as 
they perform training tasks, and can insert immediate coaching or provide performance 
evaluation to focus learner attention, link knowledge to activity, and accelerate the shifts 
between abstract and concrete learning. 

VE technology is widely used to improve self-directed learning of hands-on manual 
procedures, but it also shows appreciable promise for the use of modeling tools in a 
diverse range of higher-order applied fields, such as design engineering, policy analytics, 
and econometrics. To realize this vision, research must address the formidable 
bottlenecks around content creation and explore the types of reusable content libraries 
relevant to the subject domains. In this paper, we describe two interactive training 
projects that developed prototypes for automated content creation. A third project 
illustrates a suite of learning object libraries to support engineering instruction. 

The first project, Semantically-enabled Automated Assessment in Virtual Environments 
(SAVE), uses a 3D browser-based simulation environment for hands-on training in 
equipment maintenance, supplemented by automated generation of instructional exercise 
solutions. SAVE allows a subject matter expert (SME) to use interactive simulations for 
modeling the correct steps applied to given procedural tasks and provide a rapid way to 
extract their knowledge. The system logs an SME’s activity, which becomes the reference 
model against which learner activity is compared in automated assessment. The second 
project, AR-Mentor, delivers augmented reality (AR) overlays in head-mounted displays 
worn by student technicians while they learn vehicle maintenance. An automated speech 
system interacts with the learners as they perform equipment adjustments and 
troubleshoot electrical faults. To deliver audible step-by-step guidance, a prototype text-
to-speech translator was developed to convert steps as written in the technical manual 
into the voice of a virtual coach. The third project, Simulation for Manufacturing and 
Prototyping with a Learning Environment (SiMPLE), developed tools to allow learners to 
construct electromechanical simulations, providing an intelligent coaching system to 
enable them to iteratively refine their design specifications. These tools include object 
libraries with embedded engineering computations and suites of scripts for design 
coaching, design testing, and physical prototyping once a working simulation is achieved. 



	

	

The first two projects demonstrate practical methods of using virtual intelligent 
technologies to accelerate content production in hands-on domains: expert model tracing 
and technical instruction manual translation. The third project provides the tools needed 
to support complex technical instruction and translation to physical domains. Together, 
these projects illustrate the variety of reusable system libraries for training and 
educational platforms, demonstrate a range of opportunities for automating content 
creation, and raise awareness on techniques for built-in evaluations and assessments. 
These usages of intelligent virtual environments and simulations offer key insights that 
apply to practical training systems in numerous technical and analytic disciplines. 

Semantically-enabled Automated Assessment in Virtual Environments 
Virtual environments (VEs) provide an appealing vehicle for acquiring procedural skills, 
particularly in domains where real-world training incurs significant time, expense, or risk. 
Taking full advantage of VEs, however, requires reliable and consistent mechanisms to 
assess learner performance. Current assessment requires direct observation by an 
instructor. Creating mechanisms to enable meaningful automated assessment can both 
reduce the cost of using VEs for training and open the door to self-directed learning 
systems, so users can acquire procedural skills at their own pace and on their own time. 

The overall objective of the SAVE project was to develop a prototype assessment 
framework that observes a learner operating within an instrumented VE, evaluates their 
performance, and provides helpful feedback to improve their skills (Greuel, Myers, et al., 
2016). In contrast to intelligent tutoring tools that address purely “algorithmic” skills with a 
single or small number of acceptable responses, SAVE addresses more open-ended 
procedural skills that may have a range of acceptable solutions with significant variation 
among them. Assessment in SAVE is facilitated by content authoring tools that enable 
the efficient specification by SMEs of training exercises and solutions to those exercises. 

SAVE supports two classes of end users: learners who are assessed while performing 
exercises in the VE, and content authors who are responsible for developing exercise 
materials. Figure 1 provides a brief summary of the SAVE architecture, which is 
organized around these two user types. The training exercise user interface (EUI) 
provides both a visualization of a learning task and the interactive mechanism for solving 
the problem (L1). The learner actions are logged in a semantically grounded trace (L2); 
the automated assessment module (L3) compares these actions to the solution model for 
the problem, and generates learner-friendly feedback (L4) for display in the EUI. 

The content authoring tools are used by two different types of authors, working in 
collaboration. The semantic 3D model author uses an annotation tool to define semantic 
overlays (A1) to generate a characterization of 3D objects and their components. With a 
content assembly tool (CAT), an instructional content author then uses these annotated 
objects to compose a specific virtual context for a training exercise (A2). A key element of 
our approach to exercise authoring is that the author first defines the procedural structure 



	

	

of the solution by demonstrating how it should be done directly in the EUI (A3); a 
companion solution editor (A4) then enables the author to specify annotations to the 
solution that define allowed variations from the initial demonstration. 

Figure 1: The SAVE framework supports both learners and content authors 

 
Source: Greuel, Myers, et al., 2016 

 
The initial prototype of the SAVE framework was developed in part to support preliminary 
evaluation and user studies (Myers & Gervasio, 2016). The framework is extensible to 
support the addition of, and reasoning about, dynamic state information linked to objects 
populating the semantic VE. Future plans include a provision for behavior specification 
within the 3D model authoring process, assistance tools that guide instructional content 
authors in solution editing process, and an improved core solution matching capability. 
Further, additional means are under consideration to build upon the basic capabilities of 
the SAVE prototype, including (1) the application of a design-for-assessment approach to 
provide an iterative experimental protocol for adapting evidence-centered design 
resources to the system and (2) multimodal analysis framework to provide data-based 
insights into learner strategies and behaviors (Greuel, Murray, & Yadav, 2016). 

Action and Solution Models  

Action models in SAVE are initial representations of potential actions and events, which 
provide the semantic basis for use in content authoring and learner performance 
assessment. Two-level action models allow for reasoning about user actions at both the 



	

	

level of individual steps in coordinate-space and aggregated actions in a semantically-
grounded space. An abstraction mechanism converts basic EUI keyboard and mouse 
actions into higher-level, meaningful actions for assessment. A solution model in SAVE is 
composed of one or more generalized action traces, each consisting of a sequence of 
steps and annotations that specify the allowed variations. A step is a parameterized 
action, a class of actions, or a set of options, each of which is composed of a partially 
ordered set of steps. Annotations defined over steps include action ordering and grouping 
constraints; annotations defined over parameters include parameter type, value, and 
equality constraints; and annotations defined over state capture requirements on the 
application state or on object properties that cannot be determined from actions 
themselves. Solution models thus implicitly define sets of specific solution instances, 
each of which is considered a valid solution. 

Automated Assessment and Pattern Matching 

The automated assessment module in SAVE determines a mapping from a learner 
response to the predefined exercise solution model. This alignment problem is formulated 
as approximate graph matching, using graph edit distance to rate the quality of the 
mappings. Graph edit distance measures the cumulative cost of graph editing operations 
(e.g., deletions, insertions) needed to transform the learner response into an instance 
consistent with the solution model. The intuition is that the lowest-cost alignment 
corresponds to the specific solution instance the learner is most likely attempting. 

To perform assessment through approximate graph matching in SAVE, the solution 
model is represented as one or more graphs, each representing a family of possible 
solutions. Within the graphs, actions and their parameters are nodes, parameter roles are 
links, and conditions required by the solution are constraints on one or more nodes. The 
learner response is represented similarly as a response graph. Alignment involves finding 
the lowest-cost mapping between the response and a solution graph, with costs incurred 
for missing mappings and violated constraints. 

The SAVE approach provides an automated assessment of a learner’s performance, 
providing contextual feedback to help improve their skills and enhance their 
understanding. In contrast to intelligent tutoring tools that assess “algorithmic” skills with 
single acceptable responses, SAVE addresses open-ended procedural skills with a range 
of acceptable solutions. The automated assessment is facilitated by content authoring 
tools that enable instructors to specify training exercises and solutions to those exercises. 

Technical Training using Augmented Reality Mentoring 
Technical training is often needed to conduct safe and efficient repairs and maintenance 
on complex mechanical equipment. However, such training can be very expensive, since 
it typically consists of one-on-one demonstrations and painstaking trial-and-error review 
of dense technical manuals. The AR-Mentor system offers a more independent and self-



	

	

paced approach to such hands-on training (Kumar et al., 2014). The system uses two 
types of technology: see-through AR overlays, which permit learning while gazing directly 
at the work space rather than glancing back at instructions, and automated interactive 
dialog, which enables the learner to pace their instruction as needed. Instruction is 
delivered through a head-mounted display with an earphone and microphone. 

With AR-Mentor, the learner receives on-demand voice instruction and views several 
types of visual overlays: annotated technical diagrams of complex equipment and tools, 
3D animations to demonstrate how to manipulate tools and components, animated icons 
that direct the learner’s gaze, and live-action videos of mechanics conducting procedures. 
The learner can ask questions, skip steps, or request steps to be repeated. 

A research team tested the AR-Mentor prototype in a technician instruction context during 
a 12-week, 512-hour, and 80-lesson maintenance training session for ground 
transportation vehicles. The prototype was tested with two of these lessons, one focused 
on learning detailed procedural content (Lesson A) and one focused on alternate 
troubleshooting procedures that involved decision making based on logic and reasoning 
(Lesson B). Lesson A involved 33 steps that took an experienced technician about 40 
minutes to perform. The procedure required learning how to use a tool called a bubble 
level that contains multiple levels, each placed at subtly different angles. In addition, the 
procedure required the technician to move to four different locations on the vehicle. For 
the Lesson B, trainees were learning to troubleshoot electrical circuits — a form of 
logical-deductive reasoning based on locating the cause of the fault through systematic 
testing. To support this more complex form of learning, AR-Mentor blended step-by-step 
illustrated and verbal instructions with embedded formative assessments of next-step 
reasoning. AR-Mentor displayed schematic diagrams that were annotated to represent 
the state of the circuit (on, off) and to point out where the mechanics should perform 
diagnostic tests of circuits (e.g., using a multimeter). In the training setting, instructors 
taught by programming a training system to simulate four different electrical continuity 
bugs in the vehicle’s power distribution system. For the purposes of the study, three bugs 
were used for training and one bug for performance assessment. System performance 
assessment involved administering assessments of learning and observers coding the 
quality of the learning process (e.g., errors, help-seeking, time to complete) in two 
contrasting training conditions: (1) pairs of trainees using AR-Mentor and, (2) guidance 
provided by an individual instructor (see Results of Learning below). 

Learning Model  

According to learning science theory, AR-Mentor may not only make learning easier 
because it reduces the distractions associated with shifting eye gaze from instructions to 
the work space, it also supports self-directed learning by delivering three types of learning 
modalities in parallel: (1) hands-on practice, (2) visual demonstration, and (3) verbal 
explanation. This presentation activates three parallel neurological processing tracks: the 



	

	

temporal-spatial, visual, and logical-verbal. According to parallel processing theory, when 
multiple neurological systems are activated, transfer of knowledge to long-term memory 
is enhanced (Mayer & Moreno, 2002; Paivio, 1971). In addition, AR-Mentor was observed 
to enhance two social learning processes: mentoring and peer collaboration. In 
observations of the AR-Mentor in context, trainees asked fewer questions of instructors, 
and instructors did not need to repeat the information as frequently. Higher degrees of 
learner confidence and agency were also observed and confirmed in interviews. 

In practice, the system provided two forms of tutoring: First, as an automated technical 
manual that walked a mechanic through step-by-step procedures with interactive voice 
instructions (e.g., the learner states “Computer, done” after a step is completed and 
requests “Computer, next step” when ready to move on) and instructive graphics with text 
projected over the work environment. This step-by-step approach was developed and 
refined over two rounds of pilot testing. Second, the system functioned as a coaching tool 
that taught troubleshooting skills through a mix of step-by-step dialog and specially 
created, embedded formative assessments. These assessments prompted the trainee to 
reflect on next-step reasoning in the process before the system provided direct instruction 
on that step (see example in Figure 2). The coaching tool approach was piloted once. 

Figure 2: Sample next step reasoning assessment 

 
Source: Yarnall et al., 2015 

Content Creation  

Content creation for the procedures required hundreds of hours to interview expert 
instructors, record video of the correct steps, program libraries of animation sequences 
and voice dialog scripts, and calibrate the 3D arrows and graphic overlays to the gaze of 
the learner. This process represents a bottleneck that limits the applicability of such 
technology in work contexts where mechanics need to learn several dozen procedures 
and are required to update knowledge flexibly as equipment changes. To accelerate the 
process, the AR-Mentor team developed a system concept to permit instructors and 
SMEs to create lessons by taking demonstration pictures and video recordings, entering 
them into a reusable library, and using a graphical editor to build a lesson. 



	

	

For generation of automated dialog instructions, a method was specified for translating 
the text of a technical manual into automated voice dialog. This involved parsing the text 
to identify sections associated with schemas they established for work tasks and step-by-
step dialog. The work task schema had five components: (1) determining a specific “work 
package” in a technical manual, (2) checking tools and parts relevant to that work 
package, (3) establishing the equipment pre-conditions, (4) providing relevant safety 
warnings, and (5) delivering the procedural steps. The dialog schema focused on five 
“primitives” of interactive self-learning dialog: (1) going to a specific step, (2) repeating a 
step, (3) obtaining the location of a component, (4) obtaining the definition of a 
component, and (5) obtaining an explanation of a step. 

Results of Learning  

The initial round of testing of the automated technical manual approach revealed basic 
efficacy, but identified learning problems around the complex bubble level procedures. 
Analysis linked the problem to an overly dense presentation of visual and dialog 
information of the bubble level content. These representations were simplified and 
delivered at a slower pace. The second round of testing showed comparable results in 
the learning process between the AR-Mentor and instructor conditions (e.g., errors, help-
seeking) with much reduced burden on the instructor (see Table 1). In addition, the 
simplification of bubble level information led to significantly fewer errors than Round 1 on 
those steps (Round 1 M = 2.5 errors; Round 2 M = 0.63 errors, t(13) =  2.5, p < .03) 
(small sample analysis supported by de Winter, 2013). A test was developed and 
validated of procedural knowledge, and comparable results were obtained between the 
AR-Mentor technology and traditional instruction (Yarnall et al., 2015). 
Table 1: Comparison of novice error, help-seeking,  
instructor guidance, and time per learning conditions 

Learning  
Condition 

Total Errors 
Mean 

Total Help- 
Seeking Mean 

Total Instructor 
Guidance Mean 

Mean Total Time: 
hh:mm:ss 

AR-Mentor (n = 8)* 1.75 5.63 1.75 1:23:00 

Instructor+Manual (n = 7) 2.00 5.86 14.71 1:11:00 

Note that n represents learners completing all 33 steps by hand; not all did due to testing time constraints. 
Source: Yarnall et al., 2015 

In the case of alternate troubleshooting, the one round of testing indicated that the 
learning process involved roughly comparable amounts of time (14 minutes for instructor 
condition; 19 minutes for AR-Mentor), relatively low error rates (0.63 per bug on average 
for the instructor condition; 1.75 per bug on average for the AR-Mentor condition), but 
with 20 times as much instructor guidance required in the instructor condition than the 
AR-Mentor condition. Learners expressed positive perceptions of the AR-Mentor system. 
The final learning assessments comparing the two study conditions were discounted 
because of lack of baseline equivalence between them. The trainees in the instructor 



	

	

condition had received a full day of training in advance of the observational study and the 
AR-Mentor trainees had received no training. However, to provide an indication of AR-
Mentor’s efficacy, with an average of just 19 minutes of instruction, the 4 AR-Mentor 
learners averaged 44% correct in the performance assessment, and displayed adequate 
recollection of the procedures for using tools and recognition of components. By 
comparison, the two learners who had one day of training prior to participating in the 14-
minute practice sessions averaged 100% correct on the performance assessment. 

Future enhancements for AR-Mentor are already being developed, such as enabling the 
detection of uncertainty in learner's’ voice responses and using learners’ feedback about 
the quality of each online lesson to inform lesson updates and improvements. 

Simulating Manufacturing and Prototyping with Learning Environments 
The SiMPLE system uses a scalable massively-open online course (MOOC) interface 
and includes the Gazebo Design Kit (GDK), a 3D robotics simulation software package 
that supports rapid prototyping and iterative model enhancements (Koenig & Howard, 
2004).  The learning goals include developing proficiency using 3D simulation and other 
technologies (e.g. 3D printers, laser cutters, and robot kits) while promoting 
understanding of basic core systems. SiMPLE includes a series of five progressive, 
interactive online modules and design tasks, designed to teach students how to 
troubleshoot, adapt, and modify complex systems to meet new demands (see Table 2). 
Table 2: SiMPLE course module description 

Module Title Course Description 

SIM 101: Introduction 
to Simulation 

Explains the elements of SiMPLE and how simulation fits into the overall 
engineering design process 

SIM 102: Introduction 
to Modeling 

Explores more features of GDK and review basic electrical concepts, as 
well as the construction of a simple electric circuit 

SIM 103: Introduction 
to System Design 

Provides both mechanical simulations and physical experiments related to 
the impact of weight distribution on a simple vehicle 

SIM 104: Design 
Challenges 

Learners employ acquired knowledge and skills in engaging competitions 
designed to exemplify the use of both simulation and physical prototyping 

SIM 201: 
Customizing a Model 

Explains how GDK interfaces with other tools such as laser cutters to 
provide a broad range of flexibility for developing physical models. 

Source: SRI International, 2016 

A key feature of the SiMPLE course materials is the use of multiple representations to 
accelerate learning (Figure 3). These representations include: a 3D world view to enable 
visualization of model dynamics and interactions within the simulated world environment, 
a schematic view that allows for easy comparisons between disparate systems, a model 
editor view that shows the kinematics of the model, and a physical representation that is 
created using a robot kit. A graphing utility tool provides visual representations to 



	

	

enhance learner diagnosis of design flaws by plotting simulation properties over time; this 
tool allows users to quickly optimize simulations and make quantitative comparisons. 

The GDK enables learners to collaborate and iterate designs using a novel Component 
Modeling Language (CML) that allows users to create system-level functional models 
through an intuitive drag-and-drop graphical user interface, and to iterate designs by 
testing them in a 3D simulation environment. The model editor allows learners to build 
and simulate their models. Using this tool, learners and field personnel can explore how 
components function, test their designs, and modify complex systems. Once the design 
has gone through several iterations within the GDK simulation environment, the user is 
then able to export data files that are compatible with the other prototyping technologies 
(e.g. software for laser cutters and 3D printers). 

The MOOC course materials and software include features designed to support learning 
of physical electromechanical systems through a learning companion tool that provides 
guidance based on user performance. Embedded formative assessments or “knowledge 
checks” that provide auto-generated feedback are included in two of the five modules. 

A small pilot study with adults from a variety of backgrounds (i.e. four practitioners, one 
undergraduate student, and two university faculty) showed evidence of the potential for 
advancing the intended learning goals. Observations revealed a high degree of 
engagement and collaboration among participants.  All participants successfully 
completed the coursework, embedded assessments, and design challenges. Results 
from a pre- and post-assessment of thirteen items related to course content revealed 
improvements in learner performance, after completion of the course (see Figure 4). 

Future efforts that will advance the work of the SiMPLE project include leveraging the 
GDK back-end to collect additional data on user behaviors; enhancing the learning 
companion tool; integrating with a cloud-based modeling and simulation environment to 
enable rapid deployment; and developing additional open-ended advanced courses that 
can extend learning in many professional settings. 

Conclusions 
In this paper, we discussed several applications of VE technology to help improve self-
directed learning of manual procedures in technical occupations. We believe that these 
early-stage applications offer valuable insights that can be applied broadly to hands-on 
training systems in numerous technical and analytic disciplines. We focused in particular 
on innovative techniques for automated content creation, intelligent coaching, and learner 
performance assessment. There are promising opportunities for introducing these 
techniques in any profession where complex simulations and modeling tools are used. 
Examples of potential domains include economic policy analytics, electromechanical 
systems engineering, medical emergency response training, or clean energy workforce 
development. 



	

	

Figure 3: SiMPLE links multiple representations for fast learning 

 
Source: SRI International, 2016 
 

Figure 4: Assessment results of SiMPLE course content 
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