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Abstract 
This paper presents an approach to automated assessment for online training based on approximate 
graph matching. The algorithm lies at the core of two prototype training systems that we have built 
in accord with U.S. Army training materials: one for the use of a collaborative visualization and 
planning tool, the other for rifle maintenance. The algorithm uses approximate graph-matching 
techniques to align a representation of a student response for a training exercise with a predefined 
solution model for the exercise. The approximate matching enables tolerance to learner mistakes, 
with deviations in the alignment providing the basis for feedback that is presented to the student. 
Given that graph matching is NP-complete, the algorithm uses a heuristic approach to balance 
computational performance with alignment quality. A comprehensive experimental evaluation 
shows that our technique scales well while retaining the ability to identify correct alignments for 
responses containing realistic types and numbers of learner mistakes.  

1.  Introduction 
Online learning is a large and rapidly expanding market. A widely cited figure puts an estimate of 
over $100 billion for 2015.1 One key growth area is online training tools for learning procedural 
skills such as diagnosing failure of a device or learning how to use a complex piece of software. 
To date, work in online training systems has focused on teaching the underlying task knowledge. 
However, proficiency with such skills improves with practice, which in turn requires feedback to 
foster learning. 

We have developed a framework, called Drill Evaluation for Training (DEFT), to support 
automated assessment of learners as they perform training tasks in online environments (Myers et 
al., 2013). DEFT uses approximate graph-matching techniques, grounded in edit-distance 
optimization, to align learner actions with predefined solution models. This alignment provides 
the basis for generating assessment information with contextually relevant feedback: identifying 
mistakes, providing hints to help the student complete a task, and suggesting links to relevant 
training materials. Importantly, our approximate matching approach is tolerant of learner 
mistakes. This robustness enables assessment of exploratory learning processes rather than 
forcing learners down fixed solution paths. 

 While our assessment technology is domain independent, we have applied it within prototype 
training tools for two significant application domains. One of these assists with training for the 
                                                
1 www.forbes.com/sites/tjmccue/2014/08/27/online-learning-industry-poised-for-107-billion-in-2015/#4ff2208d66bc 
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Command Post of the Future (CPOF)—a collaborative geospatial visualization environment 
system used extensively by the U.S. Army to develop situational awareness and to plan military 
operations. In close conjunction with Army trainers, we developed a prototype to assess 
performance on training exercises drawn from the Battle Staff Operations Course, which provides 
introductory instruction on CPOF skills. The second is a rifle maintenance application that draws 
on requirements from a U.S. Army soldier training publication (Greuel et al., 2016). 

 These two prototypes demonstrated the feasibility of our automated assessment approach in 
real-world applications. They established the adequacy of our representational framework to 
capture realistic training problems and their associated solution models. Further, they showed that 
our approximate matching approach for aligning student responses to solution models works well 
in practice, enabling the generation of meaningful assessment feedback for mistakes made by 
students while completing exercises.  

 The prototypes also showed that, with some algorithm tuning, our automated assessment 
mechanism performs efficiently on representative problems for those domains. However, given 
the use of heuristic graph matching at the heart of our assessment algorithm, stronger scalability 
guarantees are required before fielding a system for deployment: graph matching is an NP-
complete problem so can be expensive to solve in the general case. For this reason, heuristic 
variants are often used (as in our assessment module) that sacrifice optimality for performance 
gains. 

 This paper presents our graph-matching approach to automated assessment and a systematic 
evaluation of it focused on computational performance and alignment quality. We begin by 
describing our approximate graph-matching approach to automated assessment, detailing the 
specific matching algorithm used by the assessment module (Section 2). We then present our 
evaluation (Section 3), which consists of two sets of experiments. The first set evaluates 
performance under realistic conditions, in terms of both number of actions in an exercise and 
numbers and types of mistakes. The second set evaluates the algorithm over increasing numbers 
of errors, to identify thresholds beyond which performance would be unacceptable. We conclude 
with a discussion of related work (Section 4) and a summary of our results (Section 5). 

2.  Automated Assessment Approach 
DEFT supports online training by providing technology for automated assessment of learned 
skills. As students work to complete exercises, DEFT performs real-time monitoring to generate a 
trace of their actions. DEFT then compares these traces to a representation of allowed solutions 
for the exercise to create assessment information that identifies omissions or mistakes. In addition 
to notifying the user of these errors, DEFT uses this information to provide guidance in the form 
of hints to help the student complete a task, and to suggest links to contextually relevant training 
materials (Myers et al., 2013). Figure 1 shows an example of DEFT’s assessment feedback for a 
student’s attempt at the Clear Rifle task in the rifle maintenance domain. 
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There have been decades of work on 
automated assessment for intelligent 
tutoring systems. However, most of this 
work is focused on teaching procedural 
skills in highly structured domains, such as 
math or physics. For this type of subject 
matter, domain models and automated 
problem solvers can be developed to 
support assessment via model tracing (e.g., 
Koedinger et al., 1997; VanLehn et al., 
2005).  In contrast, example-tracing tutors 
(Aleven et al., 2009) assess procedural 
skills by comparing student actions to a 
behavior graph that represents all 
acceptable ways of achieving a task, 
similar to our approach in DEFT. Because 
these tutoring systems seek to teach skills, 
they conduct assessment in situ to ensure that the student stays aligned with a validated solution 
path. In contrast, our target training domains are relatively open-ended, requiring certain critical 
steps to be performed in some order, but allowing potentially wide variation in the specific steps 
and the objects on which they operate. For this reason, DEFT focuses on identifying mistakes to 
assess how well a student has performed a skill overall, without forcing learners to follow a 
prescribed solution path.  

Others have explored similarly challenging domains. For example, the Steve system (Rickel 
& Johnson, 1999) provides a pedagogical agent that both teaches procedures for operating 
electro-mechanical devices and provides assistance to learners as they complete training tasks. 
Steve is designed to provide both interactive critiquing and assistance. As such, similar to most 
ITS systems, assessment occurs on a per-step basis in order to keep the student on a sanctioned 
solution path. In contrast, our work focuses on post hoc assessment of activities and so does not 
force learners down predefined solution paths. Rather, our approach supports exploratory forms 
of learning in which student actions can deviate significantly from validated solution models as 
they investigate different problem-solving strategies while practicing a skill.  

With these requirements in mind, we developed the automated assessment approach in DEFT 
to support efficient recognition of critical errors in a student response without requiring rigid 
compliance with a fixed solution and without overly penalizing extraneous but benign actions.    

2.1  Alignment Based on Graph Matching 

A solution model for a training exercise is composed of one or more generalized action traces, 
each consisting of a sequence of steps and annotations that specify allowed variations. A step is a 
parameterized action, a family of actions (e.g., all the different ways that a delete action can be 
performed), or a set of options, each composed of a partially ordered set of steps. Annotations 
defined over steps include action ordering and grouping constraints to support specification of, 

 
Figure 1. Sample assessment feedback for a rifle 
maintenance task.  
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for example, a partial order between steps, 
some of which may be specific actions and 
others of which may be any of a family or 
actions. Annotations over parameters include 
type, value, membership, and equality 
constraints, supporting the specification of, for 
example, a parameter taking on any of a 
specified set of alternative values of a 
particular type or that the output of one action 
be the same as the input of another. 

The action traces and accompanying 
annotations within a solution model define a 
set of constraints on possible solutions, thus 
implicitly specifying the valid solution 
instances for a given exercise. For example, a 
solution model for the task of cleaning a rifle 
might include steps for using a rag to clean the 
upper and lower receivers as well as the buffer 
assembly and action spring. Annotations can 
indicate that the cleaning steps may be done in any order, that the upper and lower receivers may 
be cleaned with a barber brush instead, and that cleaning the buffer assembly and action spring 
are optional. 

 The assessment module determines a mapping from a student response to the predefined 
exercise solution model. We formulate this alignment problem as an approximate graph-matching 
task, using graph edit distance to rate the quality of the mappings. Graph edit distance measures 
the cumulative cost of graph editing operations (e.g., deletions, insertions) needed to transform a 
student response into an instance consistent with the solution model. The intuition is that the 
lowest-cost alignment corresponds to the solution instance the student is most likely attempting.  

 To perform assessment through approximate graph matching, the solution model is 
represented as one or more graphs, each representing a family of possible solutions. Within the 
graphs, actions and their parameters are nodes, parameter roles are links, and conditions required 
by the solution are constraints on one or more nodes. The student response is represented 
similarly as a response graph. Alignment involves finding the lowest-cost mapping between the 
response and a solution graph, with costs incurred for missing mappings and violated constraints. 
Figure 2 depicts the process of assessment through alignment between a solution model and a 
student response. The figure shows a simple case in which there are action nodes only (i.e., no 
parameter nodes) and links represent ordering constraints. By adjusting the costs for the 
misalignments, different penalties can be assessed on different deviations. In general, extraneous 
actions can be assigned zero or minimal cost to encourage exploration and missing actions that 
are critical may incur higher penalties. For example, in cleaning the rifle, repeating any cleaning 
step is fine but not cleaning the upper or lower receiver is not.  

 
Figure 2. Assessment through graph alignment. 
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2.2  Graph Matcher Algorithm 

Exact subgraph isomorphism is an NP-complete problem and thus intractable in the most general 
case; for this reason, the graph matcher that provides the alignment capability within the 
assessment module performs approximate matching. Specifically, the alignment graph matcher 
(AGM) employs the A* algorithm (Hart et al., 1968) to search the space of possible alignments 
between a solution model and a student response.  

The AGM generates and maintains a set of partial matches, iteratively selecting a partial 
match and an unmatched solution node in the partial match to expand next, then extending the set 
of partial matches with candidate matches for that node. It chooses as the next partial match to 
expand the match with the lowest estimated total cost f(m) = g(m) + h(m), where g(m) is the cost 
of the partial match so far and h(m) is the estimated cost for the remaining unmatched nodes. 
Search terminates when one of the following conditions holds:  

• a full match is found whose cost is lower than the estimated total cost of any remaining 
partial match; 

• there are no more partial matches to expand; or 

• a designated search limit on the number of partial matches expanded is reached. 

Because the AGM only expands partial matches by adding additional matches (i.e., it does 
not consider expansions that delete existing matches), the search space is acyclic and so with an 
admissible heuristic for estimating remaining cost, A* would be guaranteed to find an optimal 
solution. However, finding such a heuristic that can be computed efficiently for our graph 
matching problem is challenging: simple heuristics such as assuming all remaining nodes will be 
matched provide too loose a bound to effectively direct search while heuristics based on true cost 
devolve to exhaustive search. Indeed, initial implementations of the AGM that used these simple 
heuristics proved to be computationally infeasible in practice. Thus, the AGM employs the 
following approach to estimate remaining cost instead. 

Recall that a solution graph consists of action nodes and parameter nodes, with the 
parameters of an action linked by parameter role edges to their actions. In expanding a partial 
match, the AGM decides on which unmatched solution node to attempt to match next by selecting 
the heaviest action node, where node weight is defined as the sum of the costs of not matching the 
action node and all its parameter nodes, and of not satisfying all associated constraints. This 
greedy heuristic is based on the intuition that matching the heaviest nodes first will tend to lead to 
the lowest-cost alignments more quickly—similar to the fail-first heuristic used in constraint 
optimization for which the variable with the fewest options is instantiated next (Haralick & Eliot, 
1980). The primary focus is on matching action nodes since the parameter nodes attached to an 
action in a solution must be matched to the parameter nodes attached to the matching action in the 
response.  

To compute the estimated remaining cost h(m) of a partial match m, the AGM relies on an a 
priori analysis of the solution against the response, in which it compares the nodes to be matched 
and the constraints to be satisfied in the solution against the space of possible node matches in the 
response. The analysis is based on the idea of measuring node shortfall. Intuitively, if there are n 
nodes of a particular type in the solution and m nodes of a matching type in the response, and m < 
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n, then at least n – m nodes in the solution will go unmatched. Thus, any match will incur the cost 
of deleting the unmatched nodes as well as the cost of all constraints associated with that node. 
By assuming that the cheapest of the solution nodes will go unmatched, we can calculate a best-
case match cost.  

 A similar analysis is performed on the constraints. Given an n-ary constraint, the n variables 
must be satisfied by different nodes (i.e., there is no constraint that expresses a relation over the 
same object). Further, given m instances in the solution of the same type of constraint, each one 
must be satisfied by a different combination of nodes; otherwise, there would be duplicate 
constraints in the solution. Thus, if there are only j possible combinations of nodes that could 
potentially satisfy k constraints, and j < k, then there will be k – j constraints left unsatisfied and 
any match will incur the corresponding cost. By assuming that the cheapest of these constraints 
will remain unsatisfied, we can calculate a best-case match cost.  

 The AGM uses this prior analysis to estimate the remaining cost for any partial match by first 
filtering out the nodes that have already been matched and the constraints that have been satisfied. 
Then, it applies the same analysis on the remaining nodes and constraints using the precomputed 
costs to estimate the best-case cost for the remaining unmatched nodes. Finally, to break ties, the 
AGM uses additional heuristics to prefer closer temporal matches (i.e., nodes in the response and 
the solution that are in about the same location) and contiguous matches. 

 After an unmatched action node in a partial match is selected for matching next, all possible 
mappings between solution and response are generated for the action node and all its attached 
parameter nodes. The selected action node in the solution is matched to action nodes in the 
response, and the associated parameter nodes in the solution are similarly matched to parameter 
nodes in the response, with constraint violations accounted for in the cost of the partial match. 
The new mappings result in expanded partial matches that are added to the queue according to 
their estimated full cost f(m) and search continues. 

3.  Graph Matcher Evaluation 
We conducted two sets of experiments to evaluate the performance of the AGM. The first set 
evaluated performance under realistic error conditions. The second set investigated performance 
under increasing numbers of specific types of errors, as a means to identify scalability limits.  

3.1  Experimental Design 

The experiments were conducted on synthetically generated responses created through controlled 
modifications to a correct solution. Access to actual users in our application domains is limited. 
Creating synthetic data in a principled manner was necessary to enable the comprehensive and 
systematic evaluations that we sought to conduct.  

Our process for generating synthetic responses is as follows. First, a solution model with 
desired characteristics (e.g., fully/partially ordered actions, unique/repeated actions, 
unique/repeated parameter values) is created from a randomly generated model of possible 
actions. Next, a valid instance of the solution model is generated by selecting parameter values 
for each action that satisfy the parameter constraints and sequencing the actions in accord with the 
ordering constraints. From this solution instance, erroneous responses are created through 
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perturbations that introduce unmatchable nodes in the solution or in the response, and/or that 
break constraints. Each perturbation introduces specific errors; ideally the AGM would find 
exactly those errors during alignment. By controlling the perturbations, we can evaluate 
performance against different types and numbers of errors. 

3.2  Metrics 

We consider two metrics: computational performance and alignment quality. To evaluate 
computational performance, we measure CPU time and number of expansions (i.e., the number of 
partial matches expanded by the AGM until an alignment is returned). To evaluate alignment 
performance, we measure precision and recall on the errors introduced by the perturbations. 
Precision measures the ability of the AGM to predict true errors while recall measures the ability 
to find the expected errors. More specifically, let 

• misalignment: a missing node, extra node, or violated constraint 
• found misalignment: a misalignment identified by the AGM 
• actual misalignment: a (real) misalignment introduced by a perturbation 
• true positive (TP): a found misalignment that is also an actual misalignment 
• false positive (FP): a found misalignment that is not an actual misalignment 
• false negative (FN): an actual misalignment that is not a found misalignment 

Then for a response r: precision(r) = TP / (TP + FP) and recall(r) = TP / (TP + FN). 
Precision/recall over a set of responses R is the average over the responses r in R. 

3.3  Experiment 1: Realistic Errors 

3.3.1  Overview 

The objective for the first experiment was to evaluate AGM performance against realistic student 
errors. Drawing from the literature on human errors (Trinh et al., 2009; Trafton et al., 2011), we 
identified and investigated nine types of errors that occur in the performance of procedural tasks; 
these are summarized in Table 1. Each error type can be generated through a set of perturbations 
to the student response, summarized in Table 2. Five of these perturbations involve actions while 
one involves parameters. Each perturbation has the potential to introduce one or more problems 
that ideally would be identified by the AGM. 

We conducted two sets of trials. One explored performance in the presence of a single error. 
The second investigated performance for multiple errors of different types. The experiment 
leveraged a base set of 20 different actions, each having one to three parameters. We randomly 
generated solution models consisting of 20 arbitrary instantiations of arbitrarily chosen actions. 
Thus, solutions generally contained some repeated actions and parameter values. For every 
action, an ordering constraint with the previous action was added with 80% probability. In 
comparison, the largest response for training exercises in the rifle maintenance domain had 16 
actions. 
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3.3.2  Results 

Table 3 summarizes the results for individual errors. For each error type in Table 1, we generated 
30 perturbations of a baseline solution with 20 actions. We ran the AGM over each perturbation 
along with the baseline solution to evaluate AGM performance in determining an alignment. 
Here, the number of violated constraints in the response (i.e., misalignments) provides a measure 
of problem difficulty. In all cases, the AGM found the expected alignments quickly (within 30 
msecs) and with little search (no more than 30 expansions). It also correctly identified all 
mistakes, i.e., precision and recall were perfect. 

Table 1. Summary of errors investigated and corresponding perturbations. 

Error	Type	 Description	 Corresponding	Perturbation	

perseveration												repeatedly	executing	the	same	action	 immediately	repeat	an	action	one	or	more	
times	

reversal	 switching	the	order	of	execution	of	two	
actions	 switch	the	order	of	two	consecutive	actions	

jump	forward	 skipping	ahead	 delete	a	contiguous	segment	(one	or	more	
consecutive	actions)		

jump	
backward	 going	back	 immediately	repeat	a	segment		

initialization	 forgetting	preparatory	actions	(typically	
before	the	main	task)	

delete	a	segment	from	the	start	of	a	
response	

post-
completion	

forgetting	clean-up	actions	(typically	after	
the	main	task	has	been	completed)	

delete	a	segment	from	the	end	of	a	
response	

anticipation	 performing	actions	too	early,	leading	to	
having	to	repeat	them	later	

pick	a	segment	and	insert	a	repetition	of	it	
anywhere	earlier	in	the	sequence	

capture	error	
(action)	

incorrect	(but	similar)	action	executed	
instead	 replace	an	action	with	some	other	action	

capture	error	
(parameter)	 correct	action	executed	on	wrong	object	 replace	the	parameters	of	an	action	with	

some	other	parameters	
 

Table 2. Perturbations and corresponding misalignments. 

Perturbation	 Misalignment	
deleted	action	 missing	actions,	violations	of	associated	constraints		

different	action	 missing	action	and	extra	action,	violations	of	associated	constraints		

inserted	action	 extra	action		

switched	actions	 violations	of	associated	ordering	constraints	

moved	action	 violations	of	associated	ordering	constraints	

different	parameter	value	 violations	of	associated	value	and	equality	constraints	

 
 



 APPROXIMATE GRAPH MATCHING FOR MISTAKE-TOLERANT SKILL ASSESSMENT  

9 

 For combinations of error types, we conducted 30 trials each on 30 different randomly 
generated solutions, introducing two to four errors per trial. Errors were generated randomly from 
a 60:40 distribution over slips and mistakes, where a slip manifests as one of the nine errors in 
Table 1 and mistakes as one of the first seven.3 

 Figure 3 displays the results for the 30 trials. The top graph shows computational metrics (# 
of violated constraints, # of expansions, CPU in msecs), for which lower is better; the bottom 
graph shows alignment quality metrics (precision, recall), for which higher is better. As can be 
seen, computational performance remains good with a maximum of 32 msecs per run. However, 
precision and recall are sometimes imperfect. A closer look at the imperfect alignments reveals 
that the AGM sometimes found an alternative but arguably just as valid alignment. For example, 
if the erroneous response is generated by deleting one (unique) action and then replacing another 
with a different instance of the unique one, our scoring scheme would expect two missing actions 
and an extra action but the AGM might instead find one missing action and violated ordering 
constraints. 

3.4  Experiment 2: Scalability Limits 

The second experiment explored scalability limits of our approach. We started with a baseline 
solution model consisting of a partially ordered set of unique one-parameter actions. We 
investigated the effects of specific types of errors by incrementally adding perturbations of that 
type to the solution. For example, to investigate the effect of missing actions, we ran successive 

                                                
3 In the literature on human errors, mistakes derive from conceptual misunderstandings while slips derive from 

incorrect application of accurate conceptual knowledge. Reason (1991) found error frequencies to be 61% skill-based, 
27% rule-based, and 11% knowledge-based, where the latter two (mistakes) have the same manifestations in our 
setting. Our evaluation is based only on the manifestations and not the causes of the errors, leading to the 60:40 
distribution used in the experiment. 

Table 3. Computation times (in msecs) and number of expansions for (a) single error cases (over trials 
with 20 incorrect responses) and (b) the correct response. 

	 Incorrect	 Correct	
	 #	Violations	 #	Expansions	 CPU	Time	 CPU	

Time	
#	

Exp.		 Min	 Max	 Avg		 Min	 Max	 Avg		 Min	 Max	 Avg		
Perseveration	 1	 2	 1.6	 14	 15	 14.3	 21.4	 30.5	 25.1	 30.3	 14	
Reversal	 1	 1	 1.0	 10	 10	 10.0	 14.4	 16.3	 15.1	 15.0	 10	
Jump	forward	 4	 10	 7.1	 17	 18	 17.4	 18.9	 24.8	 20.9	 20.4	 17	
Jump	backward	 1	 2	 1.6	 10	 12	 11.0	 15.2	 20.2	 17.1	 15.3	 10	
Initialization	 3	 12	 8.7	 16	 17	 16.5	 17.4	 19.5	 18.4	 17.8	 16	
Post-completion	 3	 10	 6.2	 13	 13	 13.0	 13.7	 14.3	 13.9	 14.4	 13	
Anticipation	 2	 2	 2.0	 12	 27	 18.4	 16.5	 24.7	 20.2	 15.0	 12	
Param	capture	 1	 3	 2.0	 13	 13	 13.0	 14.7	 16.6	 15.2	 14.8	 13	
Action	capture	 4	 13	 8.3	 14	 17	 14.7	 16.3	 19.5	 17.5	 16.9	 14	
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cases with 0–100 deleted actions. For most perturbation types, we ran 100 cases; for other types, 
we were limited to 50 because of the nature of the change (e.g., switched actions were done in 
pairs). Because the AGM’s search space grows with the number of possible matches, we also 
explored the case of different actions in which we varied the perturbations as to whether they 
introduced repeated actions and/or parameter values in the erroneous response. 

 Figures 4 and 5 show results for 30 trials each on 30 different randomly generated baseline 
solutions. The x-axis plots increasing numbers of perturbations, with successive erroneous 
responses building upon the previous response. In all cases, the AGM finds the correct 
alignments, so the display omits precision and recall (i.e., they are uniformly perfect). 

 Figure 4 shows results for the case in which solutions do not contain repeated actions and 
erroneous responses do not introduce repetitions. In this case, computational performance remains 

 

 
 

 
Figure 3. Results for aggregate heterogeneous mistakes. 
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excellent throughout for all perturbation types (below 100 msecs). Computation time generally 
increases linearly with the number of perturbations; for the case of action deletion, however, 
computation time drops with the length of the response since the corresponding matching 
problem is easier.  

 Figure 5 explores the impact of repetitions for both the “different action” perturbation (where 
successively more actions are replaced by incorrect ones) and the “additional action” perturbation 
(where successively more unnecessary actions are inserted). In both cases, repeated parameters 
have negligible effect and repeated actions have modest effect. While the combination of repeated 
actions and parameters shows exponentially increasing runtimes, performance even at the 
pathological extremes of 50+ errors for the “different action” condition (i.e., over half of the 
actions are wrong) remains acceptable (below 4 seconds).4 Similar results hold for the “additional 
action” condition.  

4.  Related Work 
There is a long line of work on graph matching in pattern recognition, with successful application 
in image and video analysis, document processing, and biological and biomedical applications 
(Conte et al., 2004). Neuhaus et al. (2006) investigate a number of suboptimal A* variants for 
computing graph edit distance and show dramatic computational gains with some sacrifice in 
accuracy when used in a nearest-neighbor image classification task.  

Conformance checking for workflows involves determining whether a given recorded trace of 
actions is consistent with a model of allowed workflows. (Adriansyah et al., 2011) represent a 
                                                
4 Martin and Corl (1986) reported finding no reliable effect on performance for problem-solving tasks when response 

delays were below five seconds.  

 

 
Figure 4. Impact of increasing # of perturbations without repetitions. 
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workflow model as a set of actions along with constraints on those actions, similar to our 
formulation of exercise solution models. Their conformance checker uses an A* algorithm that 
seeks to minimize insertion and deletion of actions. 

5.  Conclusions 
This paper presents an approximate graph-matching approach to the automated assessment of 
procedural skills. Experimental results show that the approach is scalable and can handle realistic 
numbers and types of errors. The graph-matching approach is tolerant to learner mistakes, 

 

 
 

 
Figure 5. Impact of increasing # of perturbations with repetitions.  
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enabling assessment of exploratory learning processes rather than forcing learners down fixed 
solution paths. The use of edit distance to assess match quality lets us adjust alignment behavior 
to assess penalties consistent with the significance of different errors. 

While our graph-based approach to assessment provides the flexibility needed in our target 
domains, exact subgraph matching is intractable so we use a heuristic approach instead. Prototype 
applications of our approach for automated assessment in real-world domains showed that it 
worked well on representative problems. The experimental studies described in this paper were 
motivated by the goal of determining whether our approach would scale to real-world training 
conditions. Our experiments showed that the AGM performs well under realistic error conditions. 
It finds the misalignments corresponding to the different types of errors accurately and quickly, 
considering both computational time and the number of expansions performed during search.  

 A major impediment to deployment of automated assessment capabilities of this type is the 
high cost associated with creating the solution models that drive assessment. In related work, we 
have developed an approach to model authoring rooted in end-user programming techniques 
(Myers & Gervasio, 2017). In particular, the authoring process consists of a combination of 
demonstrating solutions augmented by mechanisms for generalizing from demonstrations to a 
comprehensive solution model. With this approach, content creation no longer requires deep 
understanding of the knowledge representation and inference mechanisms within the assessment 
module. As such, content can be created by domain experts after a modest amount of training. 
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